

AFRL-IF-RS-TR-2005-245
Final Technical Report
June 2005

INTEGRATION OF ANALYTIC AND SYNTHETIC
BIOSYSTEM MODELS AND DATA

BBN Technologies

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. M304

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-245 has been reviewed and is approved for publication

APPROVED: /s/

PETER J. ROCCI, JR.
Project Engineer

 FOR THE DIRECTOR: /s/

JOSEPH CAMERA, Chief
 Information & Intelligence Exploitation Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JUNE 2005

3. REPORT TYPE AND DATES COVERED
Final Sep 01 – Dec 04

4. TITLE AND SUBTITLE
INTEGRATION OF ANALYTIC AND SYNTHETIC BIOSYSTEM MODELS
AND DATA

6. AUTHOR(S)
Jonathan Delatizky and Jonathan Webb

5. FUNDING NUMBERS
C - F30602-01-C-0210
PE - 61101E
PR - BIOC
TA - M3
WU - 04

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
BBN Technologies
10 Moulton Street
Cambridge Massachusetts 02138-1119

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFED
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-245

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Peter J. Rocci/IFED/(315) 330-4654/ Peter.Rocci@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This effort, funded under DARPA's Biocomputing (BioComp) program, was directed at providing data services for the
BioSpice infrastructure. BioSpice is an environment akin to the Electrical Engineering SPICE modeling and simulation
package, in which an open environment and standards-based modularity enable an enormous range of tools for the
development and understanding of electronic circuits to be applied without restrictions resulting from proprietary or
closed interfaces. BBN also teamed with the University of Pennsylvania to develop an intuitive tool called BioSketchpad,
for creating and parameterizing models and connecting the resulting models to a simulator. A modeling language
(Systems Biology Markup Language (SBML), was also developed for representing interesting molecular biology models
and to support model interchange between different tools. The SBML effort required collaboration with a separate
systems biology development effort (which had created the first version of SBML) that was an outgrowth of other
research efforts.

15. NUMBER OF PAGES
79

14. SUBJECT TERMS
Bio-Computation, BioSpice, Open Source, Biological Models, Systems Biology Markup
Language 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

1 INTRODUCTION..1
2 OVERVIEW ...1
3 DATA MANAGEMENT ...2

3.1 Database Working Group ..2
3.2 Database Summary ..2
3.3 Data Management Infrastructure ..3

4 BIOSKETCHPAD..4
5 MODEL LANGUAGE DEVELOPMENT...5
6 CONCLUSION...6
APPENDIX A: BIO COMP DATABASE RESOURCE SUMMARY VERSION 1.27
APPENDIX B: A DATA MANAGEMENT INFRASTRUCTURE...40
APPENDIX C: SBML LEVEL II VALIDATION RULES..56

1

1 Introduction

BBN Technologies (BBNT) contract under the DARPA BioComp program was initially
directed at providing data services for the embryonic BioSpice effort. BioSpice was
envisaged by DARPA as an environment akin to the Electrical Engineering SPICE modeling
and simulation package, in which an open environment and standards-based modularity
enable an enormous range of tools for the development and understanding of electronic
circuits to be applied without restrictions resulting from proprietary or closed interfaces.
Since nothing of the sort existed in the open source biological modeling arena, DARPA’s goal
was to jump-start its development and subsequently transition its further evolution to the
wider biological modeling and associated engineering communities.

BBNT’s role was envisaged as supporting the system integrator, SRI, and the numerous
biologists and modelers who would be developing and integrating simulators, analytical tools,
models, and other elements, in data management and data flow within the BioSpice system as
it evolved.

2 Overview

In the first year of the program, BBNT performed the following tasks in support of this role:

• Surveyed existing database systems used by biologists and modelers and published a
listing categorizing databases by content, organization, and access mechanisms

• Stood up and ran a database working group, with participation from most performers
under the program, to assess BioSpice needs for data management and to direct
develop of a data management architecture

• Published a white paper defining a data management architecture for BioSpice based
on these inputs

• Proposed and performed an initial implementation of a Java-base class library for the
realization of this architecture.

In addition, recognizing that there was a dearth of tools for visual modeling of molecular
biological systems, we teamed with the University of Pennsylvania to initiate development of
an intuitive tool for creating and parameterizing models and connecting the resulting models
to a simulator. The specific simulator chosen was Penn’s CHARON, a hybrid simulation
environment well suited to the discontinuities that occur in the kind of biological models of
interest. The tool we developed was called BioSketchpad.

BBNT’s efforts in the subsequent year were directed by DARPA PM Dr. Sri Kumar towards
further development of the BioSketchpad modeling tool and into development of a modeling
language - Systems Biology Markup Language (SBML) - for representing interesting
molecular biology models and to support model interchange between different tools. The

2

SBML effort required collaboration with a separate systems biology development effort
(which had created the first version of SBML) that was an outgrowth of other research efforts.
The collaboration between these researchers and the BioSpice teams led to both an
acceleration in SBML evolution as well as an increase in the quality of the resulting language
specification.

In the third year, our efforts were focused by Dr. Kumar on continuing the model language
development and on the creation of tools for validating models expressed in SBML. We
developed a set of validation rules for models expressed in SBML. In further support of this
effort, we subcontracted with the Institute of Software Integrated Systems, Vanderbilt
University, to deliver an implementation of the validation rules using XSLT.

The remainder of this report describes each of these efforts. Additional detail will be found in
the white papers and other documents prepared during contract execution, copies of which are
attached to this report.

3 Data Management

3.1 Database Working Group

The data management efforts in the first year were focused around the Database Working
group (DBWG), an informal organization within the BioSpice performers which included
representatives of almost every research group. DBWG met by conference call every two
weeks through the first year, and less frequently for the next six months. Its functions were
subsequently inherited by the Systems Engineering Task Force (SEPDTF) and the
Experimentalists’ Working Group (EWG), which carried the needs for consistent data
definitions into the BioSpice product development cycles.

The concerns of the DBWG included

• What data sources and databases were available
• What the needs of the BioSpice modelers would be for such data
• What data would be generated by the community
• How might the data move around an integrated system
• What the implications were for the system integration process

3.2 Database Summary

The first question was addressed by conducting a survey of relevant database and data
sources. Most of the candidate sources were identified by participants in the DBWG
discussions and were reviewed by BBNT. Drafts of the resulting survey were circulated for

3

comment and a final version published and delivered in April 2002. A copy is attached to this
document.

The results of the survey provided an input to the SRI data warehouse development task,
providing some additional guidance as to which databases would be of most value to the
BioSpice community.

3.3 Data Management Infrastructure

The DBWG discussions also drove development of a proposed data architecture for BioSpice,
which we called the Data Management Infrastructure (DMI). The DMI proposal was based
on the following perceived requirements (excerpted from the white paper):

• Heterogeneous Data Access. The Bio-SPICE DMI must support access to many
different types of data, from sources of differing structure, in a wide range of
locations. Some will be under the control of the Bio-SPICE Program or its
participants, while many others will not.

• Flexible and Extensible. Each user may work with different organisms, models,
databases, etc. The system needs to be able to incorporate and adapt to these
individual needs. Users must be able to adapt the system themselves.

• Data Integrity. The data managed by the DMI must be protected against corruption.
Internal consistency must be guaranteed. In addition, data extracted from other
sources must be traceable to their origins.

• Defined Semantics. Semantic relationships between data elements managed by the
system must be maintained. They must also be available to other Bio-SPICE code for
computational purposes and in human-readable form for browsing.

• Performance. The DMI must provide adequate performance for both local and
network operations. When the nature of a data operation is likely to introduce
significant delays, the DMI must inform the user and provide a mechanism to cancel
or modify the operation to improve system responsiveness.

• Access Controls and Data Sharing. The DMI must provide mechanisms for
identification and authentication of users, and selective sharing of contents with
identified or general users (i.e. discretionary access control to its content).

• Version control. The DMI must have the ability to manage multiple versions of the
objects in its stores.

• Update Mechanisms. The DMI must provide mechanisms to update the core
elements as the system evolves, and to determine whether the data obtained from
external sources that it manages has been updated. At user discretion, automatic and
manual methods for incorporating the updated information must be available.

A hierarchical architecture fulfilling these requirements was designed and described in the
white paper entitled “A Data Management Infrastructure for BioSpice.” The final version of

4

the white paper was completed and delivered in April 2002. A copy is attached. We
developed an initial implementation of a Java class library to support the data interchange
mechanisms presented in the white paper, but were directed to focus resources on other areas
before the implementation was complete.

The concepts embodied in the paper were utilized by the SEPDTF and EWG groups, though
the subsequent implementation choices they made differed in detail from what had been
presented in the white paper. In part, the choice of the NetBeans environment as the substrate
for BioSpice constrained the architectural options for data management and led to a somewhat
different implementation, although similar in philosophy to the original proposal.

4 BioSketchpad

Informal discussions between BBNT staff and other BioSpice performers at the second PI
meeting led to the realization that non-commercial user-friendly tools for creating, editing,
parameterizing, and executing models were lacking. Following further discussions between
BBNT and the University of Pennsylvania group led by Harvey Rubin and Vijay Kumar led
to the proposal that our two groups collaborate on development of a visual model creation tool
that would allow a biologist to “draw” a model on a computer screen “canvas,” supply
parameters and initial conditions, and execute the model in Penn’s CHARON simulation
engine. The result of this collaboration was BioSketchpad (BSP). BSP drew on the insights
of modelers at Penn and elsewhere (most notably John Tyson and Cliff Schaffer at Virginia
Tech) to create the biologist-friendly front end for visually defining the model geometry and
associating appropriate rate laws etc with the pathways that were defined. BSP would then
recast the model in the form required by CHARON and run the simulation, presenting its
graphical output on the screen.

The architecture of BSP was generalized after the initial proof of concept release to decrease
the dependence of the code generation engine on CHARON as a first step towards making
BSP useful with a wider range of simulators.

BSP development after the initial releases concentrated on increasing the interoperability of
the tool with other BioSpice components. These included

• Development and partial implementation of an API to allow programmatic control of
BSP

• Development of the ability of BSP to read and write models expressed in SBML, as
well as in its own internal representation

• Numerous enhancements to rate law mechanics and the range of supported rate laws
• Support for rational stoichiometric coefficients (initially only integer coefficients were

supported). This allowed BioSketchpad to be used to visualize the reaction geometries
and stoichiometry of the Harvard group’s Flux Balance Analysis methodology.

5

• Development of a mechanism for providing visual layout information to an
unannotated imported SBML model, using graphviz. Without this mechanism, all
nodes and pathways in an imported SBML model would be overlaid.

• Initial development of the capability to add Jdesigner annotations to exported SBML,
so that a model imported into that tool would be rendered in a reasonable fashion.

• Wrapped BSP using the XML-wrapper mechanism for incorporation into the BioSpice
dashboard, in which it was used and demonstrated at PI meetings.

Experience working with SBML import and export for BSP played an important role in our
contributions to the SBML language development and model interchangeability activities
within BioSpice (see further discussion in Section 5 below).

Several BSP deliveries were made to DARPA and to the BioSpice participants.

5 Model Language Development

BBNT became involved in model language development efforts within BioSpice when the
need for model interchange capabilities became apparent. This was driven in part by the
development of BSP and by the insights gained in the DMI architecture task. A Model
Definition Language working group (MDL) was stood up by DARPA and BBNT’s Jonathan
Webb joined the group and later was asked by Dr. Kumar to become co-chair with Oleg
Sokolsky of Penn.

The MDL working group reviewed potential languages for use in BioSpice and concluded
that adopting – as a basis for BioSpice – the Systems Biology Markup Language (SBML), an
XML dialect developed for the same purpose and with its own pre-existing standards group,
would be the most effective way to proceed. The MDL determined to participate actively in
the SBML development and evolution process, thereby ensuring the maximum utility to
BioSpice and the maximum interoperability with the remainder of the molecular biology
modeling community.

Working with the MDL, BBNT supported development of the SBML Level II standard,
which was approved by the SBML forum in 2004, and contributed several proposals for
incorporation into SBML Level III. Our work with model interchange between
BSP/CHARON and the Virginia Tech JigCell environment also made clear that the same
model can be expressed in different valid but incompatible idioms in SBML. For example,
representations of mathematical relationships (such as rate laws) can be represented implicitly
in the formulation of the model itself, or referenced in a manner conceptually equivalent to a
function call in a procedural programming language. A simulation engine designed to
understand one of these formats will not be able to utilize a model created using the other.
From these experiences, we proposed the need for “Style Guides” so that sets of tools that

6

subscribe to the same style would be able to interchange models efficiently. Tools with
differing style allegiances would at least have difficulty exchanging models; in some cases
interchange would not be possible without significant loss of information. However,
knowledge of which style was applicable to any tool would make it possible to know in
advance how to express models that would be compatible, and whether it would support
existing models based on their own styles.

An additional consideration in working with SBML is that the verbose XML format of the
language and the sheer size of any interesting (non-trivial) models makes it extremely difficult
to determine whether the SBML of a model is valid and self-consistent, and whether a model
written using a specific style guide in fact adheres to that style. It is therefore necessary to
provide tools for model validation. Such tools should be general, so that they can be adapted
to function with newer versions of the language as it evolves, as well as to be able to validate
against specific styles. One mechanism for implementing such a validator is to use XSLT – a
generalized tool for analyzing XML – together with a set of rules that specify validity
constraints. BBNT developed a set of such XSL rules for SBML Level II (a listing of the
rules is attached to the electronic form of this report) and the XSLT implementation was
carried out under subcontract to BBNT by the Institute of Software Integrated Systems at
Vanderbilt University.

6 Conclusion

BBNT’s tasking under this contract provided significant value to DARPA and to the BioSpice
Program. Our contributions and their significance included

• Data Management – architectural requirements, identification of relevant data sources,
data commonality across modalities, recognition of interoperability challenges and
strategies for mitigation,

• Visual Modeling – provision of an effective prototype that was useful in its own right
and subsequently helped motivate and direct effective development of model creation
and editing tools by other BioSpice performers

• Model Representation – development and refinement of SBML beyond level I, need
for consistency in usage (style guides), validation methodology and sample
implementations

• Systems Engineering – our knowledge and understanding of systems engineering
challenges were made available through our participation in SEPDTF, EWG, and
MDL working groups and by our feedback and comments throughout the program.

7

Appendix A: Bio Comp Database Resource Summary
Version 1.2
This document was developed by the DBWG (Data Base Working Group). It is based on an
initial list provided by Adam Arkin, which was augmented with inputs provided by other PIs.
Its purpose is to

(1) summarize databases of potential interest to the Bio-SPICE community, and
(2) provide reference information on those databases.

This is an evolving document which should grow to capture the evolving
needs and thoughts of the Bio-SPICE community as a whole.

To suggest changes, please send email to biospice-dbwg@bbn.com.

To join the working group (and get on the email list), send email to
majordomo@bbn.com and type the following in the body of the email
“subscribe biospice-dbwg”.

This document is organized as follows:

1. The listing of public databases likely to be of interest to the BioSpice community
2. An enumeration of the databases considered to be of high importance by members of

the DBWG
3. An area for write-ins of other public databases that should be added to the master list.

8

Quick reference to Contents

Sequence Databases.. Page 2
Structure Databases .. Page 5
Biochemical and Biophysical Databases.. Page 8
Biochemical Pathway Databases.. Page 9
Literature Databases ... Page 12
Ontology Databases.. Page 13
Translation Tools.. Page 14
Regulatory Databases ... Page 15
Microarray and Gene Expression Databases .. Page 17
Organism-Specific Databases... Page 19

High-Priority Databases ... Page 29
OAA Wrapper Availability .. Page 30
Other Databases.. Page 30

9

Sequence Databases

DNA Databank of Japan (DDBJ)
(member International Nucleotide Sequence Database Collaboration) DDBJ

DB Structure Flatfile (hierarchically arranged directories and files)
Primary Content DNA and Protein sequence. Note: Although different groups

administer DDBJ, EMBL, and NCBI, these databases share their
contents daily and contain the same information.

Supporting
Content

Identifying and functional information, features and their locations

Interfaces Searchable by key word, accession number, homology searches,
and taxonomy using various tools including FASTA, BLAST,
using Sequence Retrieval System (SRS), and SSEARCH; also
accessible by ftp, gopher, or email searches; shares new sequences
with GenBank and EMBL

Access control Unlimited read access; contribute via DDBJ using SAKURA or
Sequin

Input format Web-based or gui-based submissions, DDJB format
Output format DDJB format; XML version available via ftp
URL http://www.ddbj.nig.ac.jp/
License No restrictions for publication or any other service. They request

that the DDBJ be credited. No description of license or disclaimer
on the web site. This description was received in email.

European Molecular Biology Laboratory (EMBL) / EBI Nucleotide Sequence
Database (member International Nucleotide Sequence Database Collaboration)

EMBL
DB Structure Flatfile
Primary Content DNA sequence. Note: Although different groups administer

DDBJ, EMBL, and NCBI, these databases share their contents
daily and contain the same information.

Supporting
Content

Literature references, functional information, locations of mRNAs
and coding regions, positions of important mutations

Interfaces Shares new sequences with GenBank and DDBJ; sequence format
usually has to be changed for use with sequence analysis software

Access control Unlimited read access; contribute via EMBL
Output format EMBL format (similar to GenBank)
URL http://www.ebi.ac.uk/embl/index.html

Priority

Priority

10

License No restrictions for publication or redistribution. They require that
the original source of the data be acknowledged by reference to the
EMBL database (www.ebi.ac.uk/embl) and by citing the
publication describing the EMBL database: Stoesser G. et al. 'The
EMBL Nucleotide Sequence Database'. Nucleic Acids Res 30:21-
26(2002).

GenBank (member International Nucleotide Sequence Database Collaboration)
NCBI

DB Structure Flat File and ASN.1 versions available (< 60 GB)
Primary Content DNA sequence. Although different groups administer DDBJ,

EMBL, and NCBI, these databases share their contents daily and
contain the same information.

Supporting
Content

Translation products (protein sequence), literature references,
functional information, locations of mRNAs and coding regions,
positions of important mutations

Interfaces Can be searched using various tools including BLAST and Entrez
(Web-Entrez or Network-Entrez), shares new sequences with
EMBL and DDBJ, incorporates data from Genome Sequence Data
Base (GSDB); database can be downloaded via ftp

Access control Unlimited read access; contribute via NCBI
Input format Form-based via web interface (BankIt) or local gui (Sequin) for

large submissions, email or diskette
Output format GenBank format
URL http://www.ncbi.nlm.nih.gov/

License Copyright for the data belongs to the authors of the records. NCBI

requests credit and that the disclaimer be reposted.
http://www.ncbi.nlm.nih.gov/About/disclaimer.html

SwissProt (and trEMBL)
swissprot

Structure Flatfile
Primary Content Protein sequence (translated from the EMBL/EBI Nucleotide

Sequence Database)
Supporting
Content

Similar to EMBL but with more information about physical and
biochemical properties

Interfaces Can be searched using various tools including ExPaSy web server;
database can be downloaded via ftp and is available on CD

Access control Unlimited read access; contribute via EMBL
Input format Similar to EMBL
Output format SwissProt format (similar to EMBL); XML version planned
URL http://www.expasy.ch/sprot/sprot-top.html

Priority

Priority

11

License Providers (re-issuers) are required to pay a renewable flat rate
license fee for the inclusion of all or part of the SWISS-PROT
database into their service/product and making this available. They
are also required to notify their users that the use of this 'parsed'
copyright data from SWISS-PROT requires that they in turn
acquire an end-user license from GeneBio.

12

Protein Information Resource (PIR)

PIR
Structure Flatfile
Primary Content Protein sequence
Supporting
Content

Literature references, taxonomic and experimental information,
and important features of the sequence

Interfaces Database can be downloaded via ftp in several formats, including
NBRF, XML, CODATA and FASTA

Access control Unlimited read access; contribute via PIR
Input format Form-based via web, via email or diskette
Output format NBRF format (also called PIR Sequence format)
URL http://www-nbrf.georgetown.edu/pirwww/

License Redistribution is free but PIR requests being informed and that the

external users keep up to date.
(http://pir.georgetown.edu/pirwww/aboutpir/citepir.html#2)

The Institute for Genomic Research (TIGR)
TIGR

Structure Flatfiles; multiple databases for different species
Primary Content Gene sequence for particular species with genomic projects
Supporting
Content

Project information, reference citations, taxonomic information

Interfaces Web-based search tools available, including BLAST. Database
can be downloaded via ftp.

Access control Unlimited read access
Input format FASTA
Output format FASTA
URL http://www.tigr.org/
License Can not be reproduced, republished, redistributed, or transferred

without the written permission of TIGR
http://www.tigr.org/new/disclaimer.shtml

Priority

Priority

13

Structure Databases

CATH
CATH

Structure Flatfile
Primary Content Hierarchical domain classification of protein structures; proteins

are classified by class, architecture, topology, and homologous
superfamily.

Supporting
Content

Various identifying annotations and references. Finer-grained
classifications are also given.

Interfaces Web-based. Search and structural analysis software available;
database also accessible via ftp.

Access control Unlimited read access
Output format CATH format (FASTA-style)
URL http://www.biochem.ucl.ac.uk/bsm/cath_new/index.html

License No restrictions for academic use. Rights are owned by

inpharmatica, who should be contacted for other uses.
FSSP

Structure Flatfile
Primary Content Structural alignments of pair-wise combinations of the proteins in

PDB
Supporting
Content

Identifying annotations, references, and alignment scores

Interfaces Web-based, tools available for searching; automatically updated
from PDB using Dali software; database also accessible via ftp.

Access control Unlimited read access
Output format FSSP format
URL http://www.ebi.ac.uk/dali/fssp/fssp.html
License

Priority

Priority

14

Protein Data Bank (PDB)

PDB
Structure Flatfile
Primary Content 3D structure of biopolymers (atomic coordinates)
Supporting
Content

Literature references, structure information, crystallographic
structure factors, NMR experimental data

Interfaces Web-based. Many tools for viewing and analyzing these data
interface with this database. PDB files are accessible via ftp and
are available on CD

Access control Unlimited read access
Output format Atomic Coordinate Entry Format (also called PDB format)
URL http://www.rcsb.org/pdb/

License The contents of PDB are in the public domain, but it is expected

that the authors of an entry as well as the PDB be properly cited
whenever their work is referred to.
(http://www.rcsb.org/pdb/citing.html)

NCBI Molecular Modeling Database (MMDB)
MMDB

Structure Flatfile
Primary content 3D structure of biopolymers, obtained from PDB
Supporting
Content

Identifying and reference annotations

Interfaces Web-based. Tools available for structural comparison, viewing,
etc., including VAST and Entrez

Access control Unlimited read access
Output format ASN.1 format; XML also available
URL http://www.ncbi.nlm.nih.gov/Structure/MMDB/mmdb.shtml

License This database reuses data from PDB, so reuse must comply with

PDB usage. There are no restrictions on the NCBI add-ons.
Structural Classification of Proteins (SCOP)

SCOP
Structure Flatfile
Primary Content Structural relationship among known protein structures (based on

PDB) – hierarchically classifies protein structures from PDB
Supporting
Content

Identifying and reference annotations

Interfaces Web access; search tools available
Access control Unlimited read access
Output format SCOP format
URL http://scop.mrc-lmb.cam.ac.uk/scop/

Priority

Priority

Priority

15

License A license is required. The license is free only for academic users.
(http://scop.mrc-lmb.cam.ac.uk/scoplic/licence.html)

DoubleTwist
(May soon be unavailable because the creator has shut down)

DB Structure Proprietary - not specified in public documents
Primary Content DNA Sequence; more then 35 integrated public and proprietary

data sets and their exclusive Annotated Human and Mouse Gene
Indices

Supporting
Content

Extensive expert annotation, data visualization tools, data mining
tools

Interfaces Web interface
Access control Commercial product – license fee for access
Input format Web form interface
Output format Web pages; custom reports (format unspecified in public pages)
URL http://www.doubletwist.com/
License Access to the database is by subscription. Re-publishing or re-

serving is prohibited.

Priority

16

Biochemical and Biophysical Databases

ENZYME

DB Structure Flatfile with 2-character identifiers for each logical record type
Primary Content A repository of information relative to the nomenclature of

enzymes
Supporting
Content

Contains pointers to corresponding entries in SWISSPROT and
identifies diseases associated with deficiencies

Interfaces Web access through Expasy; data file can be downloaded freely
Access control None
Output format HTML table or raw data from database
URL http://www.expasy.ch/enzyme
License Copyright is owned by the Swiss Institute of Bioinformatics. Use

of the ftp-capable database is unrestricted as long as content is
unmodified.

BIND

Structure Not specified – accessed through Webgen custom software
Primary Content Regulatory interaction networks and protein-protein interactions
Supporting
Content

Connected components and alternative paths

Interfaces Custom Java interface
Access control None
Output format Appears to be UI-only
URL http://www.bind.ca/index.phtml?page=databases
License The data are free with acknowledgement to all users. BIND

source code is freely available under the GNU General Public
License. (http://www.bind.ca/index.phtml?page=faq)

Priority

Priority

17

Biochemical Pathway Databases

PathDB

DB Structure RDBMS (SQL) with custom App Server on NCGR host. Java
Application on user’s computer.

Primary Content A database designed to capture discrete metabolic steps. The
PathDB Database is able to store rich information about
pathways, enzymes, reactions, transport steps, and biochemical
compounds. All the data are categorized by taxonomy. Focus on
Arabidopsis and Yeast.

Supporting
Content

Interfaces Java-based pathway viewer and discovery tool runs on user’s
machine and communicated with NCGR server. Appears to use
RMI, but the web site isn’t clear about this. RMI and JDBC are
used internally

Access control None
Input format Not available. Input restricted to NCGR employees.
Output format Primarily visualizations
URL http://www.ncgr.org/pathdb/
License A license is required with several restrictions. It may not be

redeployed for commercial purposes.
(http://www.ncgr.org/pathdb/licensing.html)

KEGG

Structure Flatfiles similar to PIR and GenBANK databases, with added
software (DBGET components) that implement hierarchical
relationships amongst elements

Primary Content Contains several components: PATHWAY (pathways of
interacting molecules or genes); GENES (sequence information
linked to pathways); LIGAND (biologically active chemical
compounds, also linked to pathways)

Supporting
Content

Linked to DBGET database access environment, which in turn has
links to most of the other major public databases

Interfaces Web access through http://www.genome.ad.jp/kegg/. Combination
of HTML and Java. Database is downloadable; free to academics,
licensed to others.

Access control None for Web access
Output format HTML tables, Java visualizations. Flat data from downloaded

copies.

Priority

Priority

18

URL http://www.genome.ad.jp/kegg/
License A license is required for any kind of reuse or redistribution.

(http://www.genome.ad.jp/kegg/kegg5.html)
EMP and WIT

Structure Not specified. EMP appears to be RDBMS based, given a SQL

example on one of the EMP web pages.
Primary Content Enzymes and Metabolic Pathways database, EMP, covers all

aspects of enzymology and metabolism and represents the whole
factual content of original journal publications. The database
format has about 300 subject fields. The WIT Project is based on
a subset of EMP and attempts to produce metabolic
reconstructions for sequenced (or partially sequenced) genomes. It
currently provides a set of over 25 such reconstructions in varying
states of completion.

Supporting
Content

Interfaces Web access; EMP has a metabolic map editor that connects
through a TCP port to am EMP server; details of the protocol not
immediately obvious.

Access control None
Output format HTML pages and tables. Complex hyperlinked layout.
URL http://www.empproject.com/

http://wit.mcs.anl.gov/WIT2/

License http://www.anl.gov/disclaimer.html

Documents authored by Argonne National Laboratory employees
are the result of work under U.S. Government contract W-31-109-
ENG-38 and are therefore subject to the following license: The
Government is granted for itself and others acting on its behalf a
paid-up, nonexclusive, irrevokable worldwide license in these
documents to reproduce, prepare derivative works, and perform
publicly and display publicly by or on behalf of the Government.

AMAZE

Structure ODBMS (Java ObjectStore)
Primary Content A database covering metabolic pathways from different organisms

and tissues underpinned by information on enzyme function, by
building on and extending existing resources , in particular
BRENDA, KEGG/LIGAND, EMP.

Supporting
Content

Links to key sequence databases (SWISS-PROT, EMBL-
LIBRARY, GENBANK) & PDB (3D structure).

Priority

Priority

19

Interfaces Java client using RMI to connect to the amaze server
Access control None mentioned
Output format Java-based textual and diagrammatic figures
URL http://www.ebi.ac.uk/research/pfmp/texts/introduction.html

License License required to use or re-publish data.

MetaCyc

Structure Object-oriented (a flat-file version is available for download)
Primary Content MetaCyc is a metabolic-pathway database. The database describes

pathways, reactions, and enzymes of a variety of organisms, with a
microbial focus. MetaCyc contains the E. coli pathways
of EcoCyc, plus additional pathways that have been gathered from
a variety of literature and on-line sources.

Supporting
Content

Citations to the source of each pathway.

Interfaces Web-accessible using the graphical interface and query tools
provided in Pathway Tools Software. Also available in flat-file
format

Access control None
Output format Web output is specific to the Pathway Tools Software. It is also

possible to connect directly to MetaCyc objects over the web.
URL http://ecocyc.org/ecocyc/metacyc.html?
License Normally re-serving or re-publishing is not allowed. However,

since managed by SRI, they would like to work out a policy that
allows this for Bio-SPICE.

Priority

20

Literature Databases

PubMed

Structure Not specified, probably RDBMS.
Primary Content PubMed, a service of the National Library of Medicine, provides

access to over 11 million MEDLINE citations back to the mid-
1960's and additional life science journals. PubMed includes links
to many sites providing full text articles and other related
resources

Supporting
Content

Citations, publisher and journal links,

Interfaces Web-based, through NCBI.
Access control None
Output format Several popular formats, including plain text, ASN.1, XML, and

numerous others.
URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed

License If the data are to be copied, a lease is required. NCBI recommends

using the hooks already in place to pass queries through to
PubMed rather than download the data. PubMed links to several
other resources
(http://www.ncbi.nlm.nih.gov/About/disclaimer.html)

Priority

21

Ontology Databases

Gene Ontology Consortium
GO

Structure RDBMS (mySQL)
Primary Content Gene and Protein vocabularies that can be applied
Supporting
Content

Interfaces Tools are available for web-based searches. Databases can be
downloaded via ftp in either XML or mySQL formats. The
schema are described, and Perl-based and Java-based modules are
provided for accessing the data.

Access control None
Input format Searches are string-based.
Output format Search outputs are text records.
URL www.godatabase.org/dev/database

License The GO browser is OpenSource, distributed under the GNU Public

License. There are no restrictions on the ontologies, but the GO
Consortium request that they and the member organizations be
cited. http://www.geneontology.org/#cite
Microarray Gene Expression Data Group

MGED
Structure MGED is a collection of web sites and downloadable documents.
Primary Content Guidelines, object models, a data exchange format, ontologies, and

recommendations for data normalization for microarray data and
experiments.

Supporting
Content

Interfaces Access is through browsable web sites. Documents containing
guidelines, etc., are downloadable through the web.

Access control None.
Input format N/A
Output format Various documents and illustrations.
URL http://www.mged.org/
License

Priority

Priority

22

Translation Tools
(Although not Databases per se, these tools are included as resources for data services)

GCG

GCG
Content DNA or Protein sequence
Interfaces Web-based, will download the sequence in file format to a remote

PC
Access control Unlimited use (but at least one version is commercial – see

http://www.accelrys.com/)
Input/Output
format

Choice of EMBL, FASTA, GenBank, IG, PIR, STADEN, and
simple ASCII

URL http://www.nick.med.usf.edu/GCGdoc/Doc.html

License Genetics Computer Group grants permission to the University of
South Florida, Tampa, Florida, USA, to allow this document to be
available on the world wide web for use by Wisconsin Package
users from GCG-licensed institutions that have Version 8 of the
Package. If you fall under this definition, you may retrieve and
print excerpts from this hypertext version. Retrieval and printing
by all others is considered a violation of Genetic Computer
Group's copyright.

READSEQ

READSEQ
Content DNA or Protein sequence
Interfaces Web-based form
Access control Unlimited use
Input/Output
format

Choice of IG/Stanford, GenBank, NBRF, EMBL, GCG,
DNAStrider, Fitch, FASTA, Zuker, Olsen, Phylip 3.2, Phylip,
Plain, PIR/CODATA, MSF, ASN.1, and PAUP/NEXUS

URL http://bimas.dcrt.nih.gov/molbio/readseq/

Priority

Priority

23

License The software is freely available to the public for use. The author,
Don Gilbert, does not place any restrictions on its use or
reproduction. Developers are encouraged to incorporate parts in
their programs. The author would appreciate acknowledgement.
http://iubio.bio.indiana.edu/soft/molbio/readseq/java/Readseq2-
help.html#Source_code

24

Regulatory Databases

TRANSFAC

TRANSFAC
Content Eukaryotic cis-acting regulatory DNA elements and trans-acting

factors. Covers the whole range from yeast to human.
Structure Master is RDBMS-based. Flat-file exports of several tables are

made available for download on a regular basis. These have the
customary field identifiers to identify record types.

Interfaces A Web-based form interface is available to registered users.
Access Control Accounts are required, these are free for academics and non-

profits. License fees are required for commercial users.
Input/Output
format

From online interfaces, not specified in the site documentation.
Account required to access. Flatfile formats are defined in
documentation.

Supporting
content

TRANSPATH (Signal transduction database)
CYTOMER (Database of organs, cell types, physiological systems
and developmental stages)

URL http://www.gene-regulation.de/
License http://www.gene-

regulation.com/pub/databases/transfac/doc/misc.html

The TRANSFAC® database is free for users from non-profit
organizations only. Users from commercial enterprises have to
license the TRANSFAC® database and accompanying programs.

Priority

25

REGULONDB

Content Transcription regulation and operon organization for different
organisms. It describes regulatory signals of transcription
initiation, promoters, regulatory binding sites of specific
regulators, ribosome binding sites and terminators, as well as
information on genes clustered in operons. These specific
annotations have been gathered from a constant search in the
literature, as well as based on computational sequence predictions.
The genomic coordinates of all these objects in each organism are
clearly indicated. Every known object has a link to at least one
MEDLINE reference.

Structure Relational
Interfaces Web-based
Access Control Free to non-commercial organizations. License required for

others.
Input/Output
format

Supporting
content

URL http://www.cifn.unam.mx/Computational_Genomics/regulondb/
License http://kinich.cifn.unam.mx:8850/db/regulondb_intro.frameset

RegulonDB database is free for academic users only. Users from
commercial companies are allowed to use the database during a
reasonable testing period. For a regular user of the web version, a
license fee should be paid. For on-site installation, please contact
ecoli-reg@cifn.unam.mx for additional information.

Priority

26

MicroArray and Gene Expression Databases

ExpressDB

Content ExpressDB is a relational database containing yeast and E. coli
RNA expression data.

Structure Relational
Interfaces Web-based forms
Access Control none
Input/Output
format

Supporting
content

URL http://arep.med.harvard.edu/ExpressDB/
License Data in this database were contributed by particular authors, and

those authors should be properly cited. Harvard has no informal
objections to redistribution or reserving. They recommend
checking with our legal department first.

Stanford Microarray Database
SMD

Content SMD stores raw and normalized data from microarray
experiments, as well as their corresponding image files. In
addition, SMD provides interfaces for data retrieval, analysis and
visualization. Data is released to the public at the researcher's
discretion or upon publication

Structure Relational (Oracle)
Interfaces Web-based forms
Access Control Access is free, but users can register and thereby save sessions
Input/Output
format

Supporting
content

URL http://genome-www5.stanford.edu/MicroArray/SMD
License Copyright for the data is owned by the contributors, who have

given permission to use the information. There are no restrictions
or redistribution, but the original source should be acknowledged.

Priority

Priority

27

Gene Expression Omnibus

GEO
Content GEO is a gene expression and hybridization array data repository,

as well as an online resource for the retrieval of gene expression
data from any organism or artificial source.

Structure Relational database containing tab-delimited ASCII
Interfaces Web-based forms, different options available including Entrez
Access Control none
Input/Output
format

Supporting
content

URL http://www.ncbi.nlm.nih.gov/geo/
License Similar to GenBank. Permission may be required for some of the

records, which may be copyrighted by the authors.
(http://www.ncbi.nlm.nih.gov/geo/info/disclaimer.cgi)

NYU Microarray Database

Content Microarray data
Structure Relational (PostgreSQL)
Interfaces
Access Control
Input/Output
format

Supporting
content

URL

Priority

Priority

28

Organism-specific Databases

FlyBase

Structure Flatfiles in a particular directory structure using links for
connecting data in different parts of the directory structure.

Primary Content FlyBase is a database of various genetic and molecular data for
Drosophila, including genes, alleles, sequences, gene products,
references, etc.

Supporting
Content

See Primary Content above.

Interfaces FlyBase is searchable via the web-based search tools. It is also
accessible via ftp. The indexing and structure of the database is
described to facilitate interfacing from other databases and
engines.

Access control None
Input Format Searches are done via strings.
Output format Records returned from searches are text records. Sequences are in

FASTA format.
URL http://flybase.bio.indiana.edu
License Copyright is held by The Genetics Society of America.

Commercial use of the data is prohibited without written
permission from the FlyBase consortium. Some parts of FlyBase
are also copyrighted separately and redistribution requires
permission.

Stanford Saccharomyces Genome Database
SGD

Structure Relational (Oracle)
Primary Content Sequence analysis and tools for yeast.
Supporting
Content

Display map position, function, mutant phenotypes, homology
with human and worms, gene expression under various
experimental conditions.

Interfaces Blast and FastA search for yeast DNA and protein. Links to
GenBank, PubMed, YPD (yeast protein database), Sacch3D
(protein structural information), PIR, Swiss-Prot, CYGD (MIPS
comprehensive yeast genome database).

Access control None
Input Format
Output format
URL http://genome-www.stanford.edu/Saccharomyces/

Priority

Priority

29

License Re-publishing or re-serving the databases requires a license from
Stanford University. There is no charge for academic sharing.

Yeast Proteome Database
YPD

Structure Not specified
Primary Content Detailed information about yeast genes, their function, regulation,

mutant phenotypes of deletions and overproduction, localizations,
genetic interactions with and other proteins, homologous genes in
other organisms

Supporting Content
Interfaces Web-based search tool

Access control Commercial product. Academic institutions qualify for free
access.

Input Format
Output format

URL http://www.proteome.com/database/YPD/YPDsearch-long.html
License YPD is commercial, and large-scale downloading or reuse is

prohibited without prior written consent. Complimentary access
may be granted to not-for-profit institutions.
(http://www.proteome.com/services/policies.html)

Berkeley Drosophila Genome Project
BDGP

Structure Downloadable versions are flat files with FASTA or XML content.
Primary Content Drosophila genome sequences.
Supporting
Content

This is a rich database for Drosophila genomic information. The
genome is annotated with information on chromosomal position,
molecular function, protein domain, etc.

Interfaces The database can be searched using web-based tools provided by
the BDGP. The data sets and annotations can be downloaded, as
can several software tools useful for accessing the data.

Access control None.
Input Format String-based searches can be done.
Output format Text-based outputs result from searches. Downloaded files are in

FASTA or XML format and are available via http or ftp.
URL http://www.fruitfly.org/
License There appear to be no restrictions on the use of the data in the

BDGP database, however, the project request that they be cited
appropriately. http://www.fruitfly.org/about/citations.html

Priority

Priority

30

European Drosophila Genome Project

EDGP
Structure Downloadable versions are flat files with FASTA content.
Primary Content Drosophila X chromosome sequence.
Supporting
Content

The sequence is annotated with information on chromosomal
position, molecular function, protein domain, etc.

Interfaces The database can be searched using web-based tools provided by
the EDGP. The data sets and annotations can be downloaded.

Access control None.
Input Format String-based searches can be done.
Output format Text-based outputs result from searches. Downloaded files are in

FASTA format and are available via ftp.
URL http://edgp.ebi.ac.uk/
License There appear to be no restrictions on the use of the data in the

EDGP database. The project requests acknowledgement:
http://edgp.ebi.ac.uk/EDGPcitat.html.

Mouse Genome Database
MGD

DB Structure MGD appears to be a diverse collection of files, perhaps of
different formats. It also contains links to external databases that
contain mouse data.

Primary Content MGD contains information on mouse genetic markers, molecular
segments, phenotypes, comparative mapping data, experimental
mapping data, and
graphical displays for genetic, physical, and cytogenetic maps.

Supporting
Content

MGD appears to be a database rich in annotations, references, etc.

Interfaces The database can be searched via a set of web-based tools
provided on the web site.

Access control None.
Input format Various string-based searches can be made, e.g., using symbols,

names, etc.
Output format Searches result in textual output.
URL http://www.informatics.jax.org/mgihome/MGD/aboutMGD.shtml
License There appear to be no restrictions on the use of this data.

However, they request acknowledgement.
http://www.informatics.jax.org/mgihome/other/copyright.shtml
http://www.informatics.jax.org/mgihome/other/citation.shtml

Priority

Priority

31

Rat Genome Database

RGD
DB Structure The downloaded version is a collection of flat files in a particular

directory structure.
Primary Content Rat genetic and genomic data. This project collects these data

from diverse sources and normalizes them to a single database.
Supporting
Content

References, taxonomic information, map information, etc.

Interfaces Searches are via web-based forms. Searches appear to be cgi-
based, and the web site describes a method to generate these
searches automatically within a URL.

Access control None
Input format Searches are via web-based forms.
Output format Search results are returned as HTML.
URL http://rgd.mcw.edu/
License The data in RGD may be downloaded freely for non-commercial

purposes. The project requests proper acknowledgement and
citation: http://rgd.mcw.edu/disclaimer.shtml,
http://rgd.mcw.edu/cite.shtml.

The Gene Expression Database
GDX

DB Structure Unclear. The database does not appear to be downloadable
wholesale in any format.

Primary Content Gene expression information from the laboratory mouse. GXD
stores and integrates different types of expression data gathered
from the literature.

Supporting
Content

Literature references for mouse gene expression, a mouse
anatomical dictionary and cross references, e.g., to tissue and cell
line.

Interfaces Searches are done through web-based forms.
Access control None.
Input format Various string-based searches can be made, e.g., using symbols,

names, etc.
Output format Searches result in textual output.
URL http://www.informatics.jax.org/mgihome/GXD/aboutGXD.shtml
License There appear to be no restrictions on the use of this data.

However, they request acknowledgement.
http://www.informatics.jax.org/mgihome/other/copyright.shtml
http://www.informatics.jax.org/mgihome/other/citation.shtml

Priority

Priority

32

DictyBase
DictyBase

DB Structure Unclear. DictyBase appears to be a collection of diverse content.
Primary Content A complete resource about Dictyostelium discoideum and related

organisms. Content includes genetics and genomics, cell biology,
literature, labs, lab techniques, conferences, etc.

Supporting
Content

Interfaces Searches are via web-based forms. The database does not appear
to be downloadable or searchable through independent tools.

Access control None.
Input format Searches a via string inputs to web-based forms.
Output format Search results are returned in HTML.
URL http://dictybase.org
License

Curagen PathCalling Yeast Interaction Database

Structure Not specified
Primary Content Information on interactions between proteins in relation to the

yeast genome
Supporting
Content

Interfaces Web-based form
Access control Appears to be unrestricted, although a commercial product
Output format HTML pages
URL http://portal.curagen.com/extpc/com.curagen.portal.servlet.PortalY

eastList

License Likely restricted, since it’s commercial.

SCPD Yeast Promoter Database

Content Promoter regions of approx 6000 genes and ORFs, annotations of
known and putative regulatory sites, information on transcription
factors

Structure Appears to be relational
Interfaces Web-based
Access Control Appears to be unrestricted
Input/Output
format

Priority

Priority

Priority

33

Supporting
content

Numerous analytical tools

URL http://cgsigma.cshl.org/jian/index.html
License Permission and license from Cold Spring Harbor Laboratory are

required.

EcoCyc

Structure Object-oriented (a flat-file version is available for download)
Primary Content EcoCyc is a bioinformatics database that describes the genome and

the biochemical machinery of E. coli.
Supporting
Content

Citations to the source of each pathway.

Interfaces Web-accessible using the graphical interface and query tools
provided in Pathway Tools Software. Also available in flat-file
format.

Access control None
Output format Web output is specific to the Pathway Tools Software. It is also

possible to connect directly to EcoCyc objects over the web.
URL http://ecocyc.org/ecocyc/ecocyc.html
License Normally re-serving or re-publishing is not allowed. However,

since managed by SRI, they would like to work out a policy that
allows this for Bio-SPICE.

Priority

34

E Coli DNA Binding Site Database

Content Uses known binding sites for DNA-binding proteins to identify

other binding sites.
Structure Flatfile
Interfaces Web page listings and summaries
Access Control none
Input/Output
format

Supporting
content

URL http://arep.med.harvard.edu/ecoli_matrices/
License Similar to ExpressDB. Data in this database were contributed by

particular authors and can be considered published. The authors
should be properly cited. Harvard has no informal objections to
redistribution or reserving. They recommend checking with our
legal department first.

Yeast Expression Connection

Content Microarray data
Structure Various - Multiple database search tool
Interfaces Web interface that searches simultaneously the results of several

microarray studies for gene expression data for a given gene or
ORF

Access Control None
Input/Output
format

Supporting
content

URL http://genome-www4.stanford.edu/cgi-
bin/SGD/expression/expressionConnection.pl

License License from Stanford University is required for re-publishing or
re-serving the database or software.

Priority

Priority

35

Yeast mRNA Apparent Half-Life and Transcriptional Frequency

Content Expression level, mRNA half-life, and transcription frequency for

approximately 6000 genes
Structure Not specified
Interfaces Web-based forms
Access Control
Input/Output
format

Supporting
content

URL http://web.wi.mit.edu/young/expression/halflife.html
License

The Schizosaccharomyces pombe Genome Sequencing Project
PomBase

Content Gene sequence data.
Structure PomBase appears to a collection of databases, each of which is a

collection of flat files with particular structure and format.
Interfaces Searches are via web-based forms. The database may also be

downloaded via ftp.
Access Control None.
Input/Output
format

Searches are via web-based forms, to which the response is
returned in HTML format. The DNA sequence databases may be
downloaded in FASTA or EMBL format.

Supporting
content

In addition to the Sequence database, the following are available:
Cosmid Assembly Data, a Protein database, Gene Ontology
assignments, orthologs, and contig maps.

URL http://www.sanger.ac.uk/Projects/S_pombe
License The data in PomBase are freely available, however, the project

members request proper acknowledgement and citation:
http://www.sanger.ac.uk/Projects/use-policy.shtml.

Priority

Priority

36

The Arabidopsis Information Resource

TAIR
Content Information pertinent to Arabidopsis: genes, gene markers, clones,

sequences, maps, community, and literature.
Structure Flat files with a particular directory structure and format.
Interfaces TAIR may be searched via web-based forms. It may also be

downloaded via ftp. The TAIR web-site also has links to external
resources and provides a set of tools to interface with the database.

Access Control None.
Input/Output
format

Input to searches is via string inputs to web-based forms. Output
is returned to the browser as HTML.

Supporting
content

URL www.arabidopsis.org
License Most information may be downloaded and reproduced. However,

copyright may be owned by some contributors of data, and proper
citations should be made:
http://www.arabidopsis.org/disclaimer.html

WormBase
WormBase

Content Essentially complete genomic sequence of the nematode.
Structure AceDB format. The database can also be downloaded as flat files

with particular directory structure and format.
Interfaces Searches are possible via web-based. The databases are accessible

via ftp; tools for accessing the database are also available via ftp.
Access Control None.
Input/Output
format

Input is via web-based forms. Response is in HTML.

Supporting
content

Gene mapping, phenotypic information, references, RNA and
protein data, etc.

URL http://www.wormbase.org/
License The data in the WormBase databases are freely available. They

request proper acknowledgement and citation:
ftp://ftp.sanger.ac.uk/pub/AAREADME.use-policy.txt.

Priority

Priority

37

Wormatlas

Content A database of behavior and structural anatomy of the nematode,

Caenorhabditis elegans.
Structure A collection of web sites and downloadable documents.
Interfaces These documents and web content are accessible through the web.
Access Control None.
Input/Output
format

Content is accessible only through web browsing.

Supporting
content

URL www.wormatlas.org
License Content of the web site are copyrighted and should be cited

appropriately. http://www.wormatlas.org/copyRight.htm

Priority

38

High Priority Databases

Contributor Databases
Drew Endy NCBI

EMBL
SwissProt
SGD
YPD
PDB
MMDB
SCOP
BIND
PathCalling (if being actively maintained)
PubMed
SMD

John Tyson SGD
YPD
Gene Expression (notably SMD)

Peter Karp MetaCyc
Wayne Rindone FlyBase

SGD

39

OAA Wrapper Availability

Based on the discussions in the conference call on 11 February 2002, the only databases for
which an OAA wrappers already exists are KEGG and ECOCYC (done at SRI, reported by
Mark Johnson) and LBL’s BioDB (reported by Adam Arkin; some reservations about the
general availability of that wrapper were expressed).

Other Databases

Please use the space below to identify, characterize, and prioritize other public databases that
are important to you and that you think should be interfaced to BioSpice. Feel free to attach
additional pages.

40

Appendix B: A Data Management Infrastructure

for Bio-SPICE

Version 1.02

1 April 2002

Prepared for:

Prepared by:

10 Moulton Street
Cambridge, MA 02138

41

Table of contents

1 INTRODUCTION 42

2 REQUIREMENTS AND RATIONALE 43

3 OVERVIEW OF THE BIO-SPICE DATABASE MANAGEMENT INFRASTRUCTURE 45

4 INTERNAL DATABASES 47

4.1 CORE DATABASE.. 47
4.1.1 Relationships Database 47
4.1.2 Literature Reference Database 49
4.1.3 Project Information Database 49

4.2 LOCAL USER-SPECIFIED OR EXTENSIBLE DATABASES.. 49
4.2.1 Model Definitions Database 49
4.2.2 Software Repository 50
4.2.3 Literature Repository 50
4.2.4 Experimental/Simulation Data Repository 50
4.2.5 Local Instantiations of External Databases 50
4.2.6 Internal Agents to External Databases 50

5 EXTERNAL DATABASES 51

6 INTERFACES, DATA FLOWS AND INTEROPERABILITY 51

6.1 SUMMARY OF INTEROPERABILITY REQUIREMENTS AND DMI FUNCTIONALITY 51
6.2 THE BIO-SPICE WRAPPER AND COORDINATION LANGUAGE... 52
6.3 SERVICE DIRECTORY AND DISCOVERY... 52
6.4 IMPLEMENTATION POSSIBILITIES.. 53
6.5 RELATIONSHIP OF THE BIO-SPICE NOTEBOOK TO THE BIO-SPICE DATABASE 54

 List of Figures

Figure 1. Overview of the Bio-SPICE Database Management Infrastructure and its context
within the Bio-SPICE system..46

Figure 2. Example relationships than might be defined in the Relationships Database for a
particular Bio-SPICE project. To the right is a hypothetical user interface representation
of the Relationships, illustrated at the left...48

Figure 3. Data flow through the Bio-SPICE system when a Bio-SPICE application requests
data from an internal or external database element. (Although Bio-SPICE is illustrated
as a single system here, individual components may be remote from each other). ..53

Figure 4. Data flows allowing the Bio-SPICE Notebook to aggregate the components of a
Bio-SPICE Project. Some services may be remote from the Bio-SPICE Notebook and
Core Database..55

42

Introduction

The purpose of this paper is to present a Database Management Infrastructure (DMI) that can
meet the challenging needs and goals of the Bio-SPICE program. This infrastructure
recognizes and takes into account several important factors within the Bio-Computation
arena:

• While Bio-SPICE will need to provide some commonality in database organization,
each user site will need to structure its data repositories to suit local needs.

• In addition to internal data repositories, Bio-SPICE users need to access data from a
number of external sources; the volume and types of data to be accommodated are
increasing at a rapid rate.

• The community's understanding of and abilities to model biological systems are
rapidly evolving, which will translate into a set of system requirements that will
evolve over time.

• The community is working towards, but has not yet established, a stable and broad-
based ontology. The Bio-SPICE infrastructure must be able to adapt as this develops.

As a result, the Data Management Infrastructure proposed here for Bio-SPICE is designed to:

• Allow each Bio-SPICE site to organize its internal data structures to suit individual
needs

• Provide the flexibility to adapt to new or legacy data components, including project-
specific data repositories and ontologies that evolve over time; and components with
heterogeneous data structures, semantics, and APIs.

• Support access to heterogeneous external data resources from within Bio-SPICE
• Support data exchange among Bio-SPICE software components
• Support sharing and exchanging of both data structures and data across the

community, at the discretion of the user
• Be compatible with other aspects of the Bio-SPICE architecture (e.g., OAA, Bio-

SPICE Notebook).

This approach assumes that each Bio-SPICE system installation will be the primary locus for
user access and control, but it will also permit elements of each system to be remote and to be
shared with other Bio-SPICE systems. Using this model, each Bio-SPICE user controls his
view of the Bio-SPICE universe, but may share models, data, etc., with other users and
facilities.

43

Requirements and Rationale

The Bio-SPICE Program will make available a software suite that will include a data
management component. It is anticipated that individual research groups will install the suite
on one or more computers in their laboratories.

The principal requirements for the Bio-SPICE DMI include:

• Heterogeneous Data Access. The Bio-SPICE DMI must support access to many
different types of data, from sources of differing structure, in a wide range of
locations. Some will be under the control of the Bio-SPICE Program or its
participants, while many others will not.

• Flexible and Extensible. Each user may work with different organisms, models,
databases, etc. The system needs to be able to incorporate and adapt to these
individual needs. Users must be able to adapt the system themselves.

• Data Integrity. The data managed by the DMI must be protected against corruption.
Internal consistency must be guaranteed. In addition, data extracted from other
sources must be traceable to their origins.

• Defined Semantics. Semantic relationships between data elements managed by the
system must be maintained. They must also be available to other Bio-SPICE code for
computational purposes and in human-readable form for browsing.

• Performance. The DMI must provide adequate performance for both local and
network operations. When the nature of a data operation is likely to introduce
significant delays, the DMI must inform the user and provide a mechanism to cancel
or modify the operation to improve system responsiveness.

• Access Controls and Data Sharing. The DMI must provide mechanisms for
identification and authentication of users, and selective sharing of contents with
identified or general users (i.e. discretionary access control to its content).

• Version control. The DMI must have the ability to manage multiple versions of the
objects in its stores.

• Update Mechanisms. The DMI must provide mechanisms to update the core
elements as the system evolves, and to determine whether the data obtained from
external sources that it manages has been updated. At user discretion, automatic and
manual methods for incorporating the updated information must be available.

The proposed Bio-SPICE DMI is architecturally a hierarchy. Queries for data are directed
initially to local resources. If not found, or if no local resource can provide the data, external
or remote resources are utilized. Service directories provide the necessary information as to
what resources are available, both in the active installation and in other locations.

44

The proposed organization was selected for a number of reasons, including the following:

• This architecture provides the flexibility required by the program to accommodate
local customization of the data infrastructure, diversity in data sources, and ongoing
evolution of system understanding, modeling, ontology, etc.

• While the DMI is not based on a single Data Warehouse architecture, it does not
preclude use of Data Warehouses combining selected external databases, where
appropriate; they become equal participants in the Bio-SPICE data aggregation
mechanisms provided by the DMI.

• DMI support for local caching of selected data from external resources provides for
improved performance, while retaining the ability to return to the original sources for
additional data.

• Separate local repositories for different types of data (1) facilitate efficient data
management; (2) improve performance; (3) facilitate provision of fine-grained access
control to the elements in an individual Bio-SPICE installation; and (4) support rapid
incorporation of data structures provided by other laboratories or required by new
software components.

Satisfaction of some requirements is dependent on implementation details, rather than on the
underlying architecture. For example, data integrity and access control requirements can be
addressed by the selection and configuration of the database engine with which the DMI will
be built.

Implementation of this architectural model, including the ability of users to incorporate new
repositories at will and customize the representation of each, does impose some additional
complexity on the Bio-SPICE infrastructure software. This cost is, however, inevitable if the
required flexibility is to be provided, and is manageable.

The Bio-SPICE DMI would be implemented in phased releases. Initial versions would
concentrate on development of the internal management utilities to support demonstrable
proofs of concept. Later releases would add the flexibility for end-users. We anticipate that
elements of the DMI would be developed and implemented by several groups.

45

Overview of the Bio-SPICE Database Management
Infrastructure

We envision that the overall Bio-SPICE system will be delivered with access engines, user
interface capabilities, and organizational infrastructure that allow it to maintain and utilize an
extensible collection of databases, repositories, modeling tools, and other functionalities. Key
elements of the Bio-SPICE DMI (see Figure 1) to support this are:

• DMI Infrastructure Components. A database engine, software to implement and
manage heterogeneous data access, and a coordination language used to express
organization, structure, and access mechanisms for the integrated suite of Bio-SPICE
databases and repositories. Since these are the infrastructure on which the DMI is
built, they are not shown explicitly in Figure 1.

• A Bio-SPICE Core Database. The core database (which may actually be
implemented as a collection of database instances) includes:

 an extensible directory of data sources, repositories, and software components
(such as simulation engines) that have been registered with and incorporated
into a local Bio-SPICE installation (the Local Service Directory). When a
resource (internal or external) is added to those available to the installation, an
entry is added to this directory.

 an extensible internal database (the Relationships Database) representing
relationships among database elements (e.g. projects, sources of model
parameters in external data, dependencies among particular experiments,
literature citations relevant to a particular model, etc.). This is, in effect, the
“glue” that ties together the separate, stand-alone databases and repositories.

 one or more additional internal databases designed to manage sets of data
elements that have been identified as ubiquitous and of general relevance to the
Bio-SPICE community. Examples include an extensible internal database to
document and organize Projects (the Project Database), common literature
references, URLs, or metabolic parameters. The structure of these databases
will have been agreed to by the Bio-SPICE community, but will also allow
local schema extensions. The base schemas of these databases will be
instantiated when a Bio-SPICE system is installed.

.
• Internal databases and repositories. These are data repositories that are selected

and maintained locally within a Bio-SPICE installation. They may include cached
replicates of all or part of external databases, and/or project- and user-defined data
stores (including model definitions, experimental output, and annotations). Internal
repositories derived from external databases may utilize the same structure as the
parent database, or a simplified subset; the Bio-SPICE software will permit users to
define these adaptations. The local repositories serve several purposes, including:

46

 Local replication of critical data to improve performance and remove
dependence on networked resources

 Ability to curate and supplement data obtained from external databases to
support specific requirements or correct inaccuracies

• External databases. These are data resources maintained separately from the Bio-
SPICE system, but for which Bio-SPICE provides access mechanisms. Examples
include GenBank, SwissProt, MetaCyc, SMD, etc.

Bio - SPICE

O t h erB i n d G e n B a n k

Bio - SPICE
Notebook

Agent

E x t e r n a l D a t a b a s e s

Internal
Data

Structure

User Interface(s)

M odel
Server SBW Other

E x t e r n a l S e r v i c e s

Pathway - xyz
A - > B- > C

Project XYZ
System - E. Coli

Agent Agent Agent Agent Agent

Locally Defined
Data Structures Expermt .

Data

Other

Bind

Genbank

Search
Data Entry

Modeling
Analysis

Core Database
Local Service

Directory
Other

Literature
Refs Project

Info

Data
Relationships

Local
Versions

of External
Databases

Analysis Tool
Other Interface

Model
Server

Figure 1. Overview of the Bio-SPICE Database Management Infrastructure and its context within the
Bio-SPICE system. Note that the DMI provides services that can be utilized programmatically by other
BioSPICE applications, as well as by notebooks and other specialized user interfaces.

47

Internal Databases

The Internal Data Resources are maintained within a local Bio-SPICE system (although in
later releases the capability will exist to distribute them across machines). They consist of a
structured Core Database and separate repositories to hold collections of Bio-SPICE elements.
When Bio-SPICE is installed, it instantiates a Core Database structure and, optionally, a
standard set of data repositories, which can subsequently be expanded to meet the needs of an
individual Bio-SPICE site.

Core Database
The core database provides (1) a common structure to store data elements that are broadly
used by the Bio-SPICE community (e.g., literature references and project information); (2) a
mechanism to manage the content and organization of the accessible applications and data
repositories (i.e., the Local Service Directory); and (3) a mechanism to store user-defined
relationships among Bio-SPICE data elements (the Relationships Database). The local
service directory tracks internal components as well as external elements that can be accessed
through locally provided Bio-SPICE agents (such as OAA agents). As elements are added to
Bio-SPICE, such as software modules, custom databases, experimental or simulation data,
information is added to the core database to allow them to be managed and to support
navigation among them.

The Core Database will provide user identification, authentication, and authorization
capabilities. For installations that intend to share data and to impose access controls, it will
include the role information and suitable tables required to identify individual rights and
privileges for users, both local and remote.

As the Bio-SPICE community develops domain ontologies, requirements for common data
elements, etc., the core database elements will evolve. They will therefore require a formal
versioning system. It is likely that each extensible Bio-SPICE repository should have
corresponding data elements in the core database to hold relevant information such as version,
status, and access permissions.

The following is a list of candidate resources that will constitute the elements of the DMI
Core Database.

Relationships Database
This database characterizes the relationships among Bio-SPICE elements. Its purpose is to
support bi-directional navigation between related information residing in different Bio-SPICE
databases and repositories. It therefore forms the glue that relates the separate heterogeneous
databases and repositories. For example, it might be used to link BIND and SMD records
relevant to a particular experiment within a project with literature references, other related
experiments (including some managed by Bio-SPICE installations at other labs, subject to
appropriate access controls), experimental and simulation data, descriptive or executable

48

models used, and parameters. Likewise, it might link a particular literature reference to all of
the experiments that reference it, allowing access to those experiments from the literature
reference record. An example of the way related information might be represented is shown
in Figure 2.

The relationship data supports aggregation of related information and access from a single
point. The nature of the relationships between different Bio-SPICE data elements could in the
future be defined in an overall Bio-SPICE ontology. If implemented in the Relationships
Database, the ontology could in turn permit the relations of a Bio-SPICE project to be
computable and might be used to support automated reasoning about experiments.

Similarly, relationship information may be supplied to indicate dependencies that a project or
individual user identifies between project activities and data elements. The Bio-SPICE
system may be able to utilize such relationship information to support configuration
management and to assist users in maintaining consistent and current project data.

Reference
to
Project Z

References
to
Descriptive
Models

References
to
Executable
Models

References
to
Projects

References
to
Data
Repository

References
to
Literature
Citations
Database

References
to

Literature
Repository

Project Z: Whole cell model of E. coli
Created 21 February 2002
Author Adam Arkin

Project
Log

Project Z

Bio-SPICE
Create Find Import ... Exit

Church 2001. XXXXX.XXXXX
Kumar 1999. XXXXXX. XXXX
Tyson 2000. XXXX.XXXX
Seeman 2001. XXXX.XXXX
 .
 .
 .

Link
Element

Add
Element

Class
Annotate Publish Close

Project

Church 2001

Kumar 1999

Tyson 2000

Seeman 2001

Data Set 1

Data Set 2

Description 1

Description 2

Model 1

Model 2

Project X

Project Y

Church 2001

Kumar 1999

Tyson 2000

Seeman 2001
References

Experimental
Data

Descriptive
Models

Executable
Models

Related
Projects

Figure 2. Example relationships than might be defined in the Relationships Database for a particular Bio-
SPICE project. To the right is a hypothetical user interface representation of the Relationships illustrated at
the left.

49

Literature Reference Database
This database catalogues literature references of interest to the user. It contains the
information necessary to identify the reference, such as citation data, abstract, PubMed
reference data, and reference to local or public full-text versions. If a local copy is stored in
the Literature Repository (see Section 4.2.3), the Relationships Database will store a link
between it and the citation (stored here).

Project Information Database
This database holds user-defined information deemed necessary to document and control their
projects. It will enable users to manage project-related information, such as project
descriptions and notes, data and literature resources, experiment descriptions, and/or models
associated with the project. The Project Information Database may be used to support desired
Bio-SPICE applications, such as a Bio-SPICE lab Notebook. Note that most of the actual
data associated with a project may be stored in other repositories, and will be available to the
user through the Relationships Database.

Local User-specified or Extensible Databases
These are data repositories (databases or collections of data) with format and content defined
by each Bio-SPICE site. They can be expanded and customized to meet individual interests.
As repositories are added, they are made known to the Bio-SPICE Local Service Directory.
When defining a new resource, the Bio-SPICE coordination language may be used to identify
the organization, structure, and access interface for a repository. In initial releases, this
process will be manual. Automated tools will be developed as resources permit to insulate
users from this task.

The following subsections describe some likely extensible or user-specified data resources
that are likely to become part of Bio-SPICE. These are all derived from discussions within
the Bio-SPICE community. Note that these components will not all evolve at the same pace.
Some may be defined and implemented on the basis of early consensus and may quickly
become stable. Others will take longer to evolve, or may split into separate variants to
support the needs of different subgroups within the community. These different evolution
paths are easily accommodated in the DMI architecture.

Model Definitions Database
This optional database defines and tracks Bio-SPICE models that may be delivered with Bio-
SPICE. It is intended to be expanded to include models added by the user. The models
themselves are stored in a Bio-SPICE internal repository. The information held by this
database uniquely identifies the model: version, textual description, references to the
software used to either display the descriptive model or run the executable model, input
definitions, references to tools and interfacing models.

50

Software Repository
This is a collection of software modules delivered with Bio-SPICE and is extensible to
incorporate software modules added by the user. It may contain software to execute
simulations, as well as tools: pathway editors, text editors, model transformation tools (e.g.,
that transform between descriptive and executable models), model-building tools,
comparators, visualization tools, etc. The software repository may contain both legacy
software equipped with Bio-SPICE wrappers, and Bio-SPICE native components.

Literature Repository
The purpose of this repository is to store full text copies of articles and other papers on the
local Bio-SPICE system. It is referenced by the Literature database within the Core Database.

Experimental/Simulation Data Repository
This is an optional collection of files containing various kinds of experimental data and data
generated by simulation runs. Its structure and organization will be highly dependent on the
nature of the user’s experiments and simulations.

Local Instantiations of External Databases
This is a collection of databases with structure and interfaces derived from those of external
databases but with content maintained locally by the user. These databases may duplicate the
entire richness of their source databases if desired. Alternatively, they may be simplified
representations that meet the needs of the local user without requiring the full complexity of
the external database structure or content. The goal is to allow users to store pertinent
information from external databases locally, while not requiring undue complexity that may
lead to reduced system performance and greater maintenance and support requirements.

Access to data managed by this class of repository relies on the hierarchical nature of the DMI
architecture. The Local Service Directory will initially direct the DMI to direct queries for
the kind of data managed by a particular database to the local instance. If the query yields no
result, the DMI could then redirect the query to the parent – that is, the full external instance
(query reformulation may be required when the local instance is simplified). If results are
returned by the parent, the user may be provided with an option to save the resulting data
locally, as well as to use it in the context in which it was requested.

Internal Agents to External Databases
This is a collection of internal Bio-SPICE agents that mediate access to publicly maintained
databases such as GenBank.

51

External Databases

These are databases with which Bio-SPICE may interface but which are not managed within a
local Bio-SPICE system. Their interfaces, structure, and semantics are externally controlled.
There are no intrinsic constraints on the external databases that may be accessed from within
Bio-SPICE. The Bio-SPICE system supplies access to an external database by means of an
internal mediating agent. Such an agent supports access mechanisms native to the external
repository and employs APIs and protocols that have been adopted as standards for exchange
among Bio-SPICE components. In some contexts, these agents are referred to as “wrappers”
or “ambassadors”.

Data Warehouses accessed as external databases function no differently from other external
databases in the Bio-SPICE DMI architecture. They will be accessed through agents of
exactly the same type as those used for individual external databases. Their descriptions in
the coordination language will be appropriate to the merged schema and access mechanisms
of the warehouse. Note that there is no architectural or functional prohibition against building
Bio-SPICE internal data repositories in the form of data warehouses, though Bio-SPICE–
specific software to support this is unlikely to be generally available in early releases.

Interfaces, Data Flows and Interoperability

Summary of Interoperability Requirements and DMI Functionality
The Bio-SPICE DMI is designed with the expectation that it be able to incorporate many
disparate databases from different sources. The DMI should also be able to incorporate a
variety of different applications and services, and promote interoperation among different
applications and data resources. The range of potential applications is wide, but as examples,
we mention Differential Equation and Stochastic solvers, visualization tools, model-
experiment comparators, and project administrative functions. Some such applications will be
supplied along with Bio-SPICE distributions, while some will be unique to particular users
and supplied by those users. The population of applications and services available to a given
Bio-SPICE installation may vary over time.

To provide these desired operating capabilities, we foresee the following fundamental DMI
constituents:

• A set of common exchange mechanisms (protocols / APIs) that can be used by

applications (including data resources) to communicate between one another,
• The ability to construct interface agents or wrappers that adapt an application to

communicate its available outputs and required inputs using the common Bio-SPICE
exchange mechanisms,

52

• A coordination language that allows service providers and their clients to negotiate the
context for service relationships, and

• A mechanism for one application to discover and establish contact with other available
services and applications.

These DMI functionalities will be discussed briefly below1.

The Bio-SPICE Wrapper and Coordination Language
As a general rule, an agent will be supplied for each database or application that resides
external to Bio-SPICE or that was developed outside of Bio-SPICE. Its purpose is to mediate
exchange between the application it represents and other Bio-SPICE elements. In some cases,
the agent may simply be a wrapper that translates one application’s output into exchange
formats commonly used within Bio-SPICE. Wrappers enable all external sources to be
accessed by Bio-SPICE in a consistent manner.

More generally, agents may provide procedural functionality (e.g., authentication services,
web-based dialogs) of arbitrary complexity. Wrappers and other agents may make use of a
coordination language supplied with the Bio-SPICE DMI. The coordination language is a
mechanism to specify metadata that describes data structure and semantic content,
application-specific APIs, prioritizations, and other characteristics of the relationships formed
between applications and services. We envision that the coordination language will become
rich enough to allow external databases or new applications to provide self-descriptive
information, so that other Bio-SPICE applications may interact with them without requiring
detailed prior knowledge of their interface or design. This reflective capability will support
an environment to which new kinds of components can be added.

Service Directory and Discovery
We envision that Bio-SPICE applications will locate services through a service directory
(Figure 3). Upon startup, a service provider registers itself with the service directory. When a
Bio-SPICE application requires a service, it requests a service handle from the Bio-SPICE
service directory. Some service providers may reside as internal elements of a Bio-SPICE
installation, while others are external and remote. As illustrated in Figure 3, the DMI service
discovery mechanism makes this distinction transparent to other Bio-SPICE elements. Using
the service handle, the DMI locates potential providers of the service and requests information
(metadata) from the service providers about structure, semantic contents, API, and other
defining characteristics of the service and the provider. Using this information, the requesting
application formulates its service requests, and the appropriate providers respond to the
requests as specified. The service request illustrated in Figure 3 is a data query, but the types
of services provided by Bio-SPICE are limited only by what can be represented in the
coordination language used by the Bio-SPICE agents.

1 Note that many of the concepts described in this section are very similar to those of the OAA. This is not
meant to suggest that the DMI is an alternative to OAA. Instead it presents a vision of the DMI in the context of
a larger system that could be implemented in the OAA environment. This is discussed more fully in Section 6.4.

53

Bio-SPICE

Bio-SPICE

Bio-Spice wrapper

Bio-Spice Service
Directory

Bio-Spice
Application

Bio-Spice wrapper

Bio-Spice
Internal

Database

2. Service Discovery

3. Service Handles

4. Metadata query

5. Metadata

6. Data Request

7. Data

1. Registration

Bio-Spice wrapper

Bio-Spice Service
Directory

Bio-Spice
Application

External
Database

2. Service Discovery

3. Service Handles

4. Metadata query

5. Metadata

6. Data Request

9. Data

Bio-Spice
Agent

1. Registration

8. Data

7. Data Query

Figure 3. Data flow through the Bio-SPICE system when a Bio-SPICE application requests data from an
internal or external database element. (Although Bio-SPICE is illustrated as a single system here,
individual components may be remote from each other).

Implementation Possibilities
In this white paper we focus on architecture and functional capabilities that we propose for the
Bio-Space DMI. We are not here proposing specific implementation choices. The agent

54

methodologies that we have discussed could be implemented in a variety of ways, and indeed
may come to be implemented in more than one software framework. A natural choice for
database engines is to base most implementation upon SQL, but the design we are suggesting
is not reliant upon such a choice. There exist a number of directory service frameworks that
provide much of the capability discussed in Section 6.3, such as LDAP and JNDI. We believe
that our proposal is also compatible with the design, philosophy, and capabilities of SRI’s
Open Agent Architecture (OAA). The discovery and delegation properties of the OAA
Facilitator seem conceptually compatible with our concept of a service directory. Likewise,
the Interagent Communication Language (ICL) of OAA offers at least one possible
instantiation of the kind of coordination language we envision. The DMI design presented
here should be able to incorporate OAA developments, and allow the Bio-SPICE community
to take advantage of attractive OAA agent capabilities, such as multimodal user interfaces and
natural language facilities. The DMI should be able to support other implementation
frameworks as well.

Relationship of the Bio-SPICE Notebook to the Bio-SPICE Database
The “Notebook” has been proposed by several Bio-SPICE PIs as a very desirable Bio-SPICE
application. As we understand it, one of the primary functions of the notebook would be to
allow the user to organize relationships among the Bio-SPICE elements, and then use these
relationships to navigate among the Bio-SPICE services and data. Included in these
relationships could be annotations regarding the provenance of data used in models,
dependencies among experiments, and project work breakdowns. The notebook might also
include personal databases that log and organize a user’s project activities. Data flows that
meet these goals are shown in Figure 3.

55

Remote System

Remote System

Bio-SPICE
Bio-Spice Service

Directory

Bio-SPICE
local Services

2. Service
 Discovery

Core Database

Bio-SPICE
remote

Services

External
Database

Agent

Local System

1. Project Definition

Project ZBio-SPICE
Notebook

3. Service

Figure 4. Data flows allowing the Bio-SPICE Notebook to aggregate the components of a Bio-SPICE
Project. Some services may be remote from the Bio-SPICE Notebook and Core Database.

When the Bio-SPICE user creates a project in Bio-SPICE, a project entry is created in the
core database. When the user wishes to add an element (e.g., a literature reference) to the
project, the notebook adds a relationship in the project specification. In some instances, the
user might want to use a Bio-SPICE service to locate elements to link to his project. For
example, he might do a literature search for pertinent references. In this case, like other Bio-
SPICE applications, the notebook would use the Bio-SPICE service directory to locate the
appropriate service, and then invoke the service using the service handle provided by the
service directory.

56

Appendix C: SBML Level II Validation Rules

 <?xml version="1.0" encoding="UTF-8" ?>
- <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:sbml="http://www.sbml.org/sbml/level2"
xmlns:xhtml="http://www.w3.org/1999/xhtml"
xmlns:math="http://www.w3.org/1998/Math/MathML"
xmlns="http://www.w3.org/1999/xhtml" version="1.0">

- <!--
 $Id: rules.xsl,v 1.7 2004/04/13 12:28:02 jwebb Exp $
 -->

- <!--
 - validation tests for sbml level 2 version 1. this is designed to
 - work in conjunction with schema validation. checks performed against
 - the schema are not duplicated here.

 -->
 <xsl:output method="xml" omit-xml-declaration="no" version="1.0" encoding="UTF-8"

doctype-public="-//W3c//DTD XHTML 1.0 Strict//EN" />
 <xsl:variable name="sbmlLevel" select="2" />
 <xsl:variable name="sbmlVersion" select="1" />
- <xsl:template match="/">
- <html>
- <head>
 <xsl:apply-templates select="//sbml:model" mode="makeTitle" />
 </head>

- <body>
 <xsl:apply-templates />
 <xsl:apply-templates select=".//sbml:unitDefinition" mode="matchUnitId" />
 <xsl:apply-templates select=".//sbml:reaction" mode="matchReactionParamId" />
 <xsl:apply-templates select=".//sbml:model" mode="matchGlobalId" />
 <xsl:apply-templates select=".//sbml:listOfSpecies" mode="speciesCompartment" />
 <xsl:apply-templates select=".//sbml:reaction" mode="reactionReferenceCheck" />
 <xsl:apply-templates select=".//sbml:compartment" mode="compartmentUnitRef" />
 <xsl:apply-templates select=".//sbml:listOfCompartments"

mode="compartmentOutRef" />
 <xsl:apply-templates select=".//sbml:species" mode="speciesIC" />
 <xsl:apply-templates select=".//sbml:model" mode="unitDefs" />
 <xsl:apply-templates select=".//sbml:species" mode="speciesUnitRef" />
 <xsl:apply-templates select=".//sbml:parameter" mode="parameterUnitRef" />
 <xsl:apply-templates select=".//sbml:listOfRules" mode="ruleVariableRef" />
 <xsl:apply-templates select=".//sbml:listOfRules" mode="uniqueRuleRef" />
 <xsl:apply-templates select=".//sbml:event" mode="eventUnitRef" />
 <xsl:apply-templates select=".//sbml:eventAssignment" mode="eventVariableRef" />
 <xsl:apply-templates select=".//sbml:kineticLaw" mode="klawUnitRef" />
 <xsl:apply-templates select=".//sbml:functionDefinition" mode="functionLabelRef" />

57

 <xsl:apply-templates select=".//sbml:listOfRules" mode="ruleLabelRef" />
 <xsl:apply-templates select=".//sbml:kineticLaw" mode="klawLabelRef" />
 <xsl:apply-templates select=".//sbml:event" mode="delayLabelRef" />
 <xsl:apply-templates select=".//sbml:event" mode="triggerLabelRef" />
 <p>Scan complete</p>
 </body>
 </html>
 </xsl:template>

- <!--
 - report on the current id or name of the model if present. this
 - depends on the schema enforcing a single model element in the
 - stream.

 -->
- <xsl:template match="sbml:model" mode="makeTitle">
- <title>
 Validation check for

- <xsl:choose>
- <xsl:when test="boolean(@id)">
 SBML model id "

 <xsl:value-of select="@id" />
 "
 </xsl:when>

- <xsl:when test="boolean(@name)">
 SBML model name "

 <xsl:value-of select="@name" />
 "
 </xsl:when>

 <xsl:otherwise>unlabled SBML model</xsl:otherwise>
 </xsl:choose>
 </title>
 </xsl:template>

- <!--
 - make sure the declared level and version of the model match the
 - expectations of the validation processing.

 -->
- <xsl:template match="sbml:sbml[@level!=$sbmlLevel or

@version!=$sbmlVersion]">
- <p>
 SBML Level

 <xsl:value-of select="$sbmlLevel" />
 , version

 <xsl:value-of select="$sbmlVersion" />
 required for validation. The current model is level

 <xsl:value-of select="@level" />
 , version

58

 <xsl:value-of select="@version" />
 .
 </p>

 <xsl:apply-templates />
 </xsl:template>

- <!--
 - unit definition identifiers need to be unique. need a reference
 - to the various documents...

 -->
- <xsl:template match="sbml:unitDefinition[boolean(@id)]" mode="matchUnitId">
 <xsl:variable name="currentId" select="@id" />
 <xsl:apply-templates select="following-

sibling::sbml:unitDefinition[@id=$currentId]" mode="duplicateUnitId" />
 </xsl:template>

- <xsl:template match="sbml:unitDefinition" mode="duplicateUnitId">
- <p>
 Duplicate

 unitDefinition
 with id

 <xsl:value-of select="@id" />
 </p>
 </xsl:template>

- <!--
 - for any reaction, the parameters definied in the kinetic law for the
 - reaction need to have unique identifiers.

 -->
- <xsl:template

match="sbml:kineticLaw/sbml:listOfParameters/sbml:parameter[boolean(@id)]
" mode="matchReactionParamId">

 <xsl:variable name="currentId" select="@id" />
 <xsl:apply-templates select="following-sibling::sbml:parameter[@id=$currentId]"

mode="matchReactionParamId" />
 </xsl:template>

- <xsl:template match="sbml:parameter" mode="matchReactionParamId">
- <p>
 Duplicate reaction

 parameter
 with id

 <xsl:value-of select="@id" />
 in

- <xsl:choose>
- <xsl:when test="boolean(../../../@id)">
 reaction id

 <xsl:value-of select="../../../@id" />
 .

59

 </xsl:when>
- <xsl:when test="boolean(../../../@name)">
 reaction name

 <xsl:value-of select="../../../@name" />
 .
 </xsl:when>

 <xsl:otherwise>unlabeled reaction.</xsl:otherwise>
 </xsl:choose>
 </p>
 </xsl:template>

- <!--
 - for function definitions, compartments, species, reactions, rules,
 - global parameters, and events, their id's represent a single
namespace
 - and must be unique.

 -->
- <!--
 - this pattern doesn't seem to work...
 - sbml:model/*/*[self::functionDefinition or self::compartment or
 - self::species or self::parameter or self::reaction or
 - self::event][boolean(@id)]

 -->
- <xsl:template match="sbml:functionDefinition[boolean(@id)]

|sbml:compartment[boolean(@id)] |sbml:species[boolean(@id)]
|sbml:model/sbml:listOfParameters/sbml:parameter[boolean(@id)]
|sbml:reaction[boolean(@id)] |sbml:event[boolean(@id)]"
mode="matchGlobalId">

 <xsl:variable name="currentId" select="@id" />
- <xsl:if test="count(//sbml:functionDefinition[@id=$currentId]) +

count(//sbml:compartment[@id=$currentId]) +
count(//sbml:species[@id=$currentId]) +
count(//sbml:model/sbml:listOfParameters/sbml:parameter[@id=$currentId])
+ count(//sbml:reaction[@id=$currentId]) +
count(//sbml:event[@id=$currentId]) > 1">

- <p>
 Duplicate identifier for element

 <xsl:apply-templates select="." mode="elementLabelSelector" />
 with id

 <xsl:value-of select="@id" />
 .
 </p>
 </xsl:if>
 </xsl:template>

- <!--
 - the compartment reference for a species definition must refer to
 - a defined compartment. checking for the existence of the id
 - attribute in the compartment and the compartment attribute in

60

 - the species is left to the schema definition.

 -->
- <xsl:template match="sbml:listOfSpecies/sbml:species"

mode="speciesCompartment">
 <xsl:variable name="currentCompartment" select="@compartment" />
 <xsl:variable name="currentSpecies" select="@id" />
- <xsl:if test="not(boolean(//sbml:compartment[@id=$currentCompartment]))">
- <p>
 Missing compartment label

 <xsl:value-of select="$currentCompartment" />
 for species id

 <xsl:value-of select="$currentSpecies" />
 .
 </p>
 </xsl:if>
 </xsl:template>

- <!--
 - a species reference in a reaction needs to be to a defined species.
 - the reference can be from reactants, products, or modifiers.

 -->
- <xsl:template match="sbml:listOfProducts/sbml:speciesReference"

mode="reactionReferenceCheck">
- <xsl:apply-templates select="//sbml:listOfSpecies" mode="speciesExistenceCheck">
 <xsl:with-param name="speciesId" select="@species" />
 <xsl:with-param name="referenceId" select="../../@id" />
 <xsl:with-param name="referenceType">product</xsl:with-param>
 </xsl:apply-templates>
 </xsl:template>

- <xsl:template match="sbml:listOfReactants/sbml:speciesReference"
mode="reactionReferenceCheck">

- <xsl:apply-templates select="//sbml:listOfSpecies" mode="speciesExistenceCheck">
 <xsl:with-param name="speciesId" select="@species" />
 <xsl:with-param name="referenceId" select="../../@id" />
 <xsl:with-param name="referenceType">reactant</xsl:with-param>
 </xsl:apply-templates>
 </xsl:template>

- <xsl:template match="sbml:modifierSpeciesReference"
mode="reactionReferenceCheck">

- <xsl:apply-templates select="//sbml:listOfSpecies" mode="speciesExistenceCheck">
 <xsl:with-param name="speciesId" select="@species" />
 <xsl:with-param name="referenceId" select="../../@id" />
 <xsl:with-param name="referenceType">modifier</xsl:with-param>
 </xsl:apply-templates>
 </xsl:template>

- <xsl:template match="sbml:listOfSpecies" mode="speciesExistenceCheck">

61

 <xsl:param name="speciesId" />
 <xsl:param name="referenceId" />
 <xsl:param name="referenceType" />
- <xsl:if test="count(sbml:species[@id=$speciesId]) = 0">
- <p>
 Missing species definition for species id

 <xsl:value-of select="$speciesId" />
 from

- <xsl:choose>
- <xsl:when test="boolean($referenceType)">
- <xsl:choose>
- <xsl:when test="boolean($referenceId)">
-
 <xsl:value-of select="$referenceType" />

 reference with reaction id

 <xsl:value-of select="$referenceId" />
 .
 </xsl:when>

- <xsl:otherwise>
 unlabeled

-
 <xsl:value-of select="$referenceType" />

 reference.
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>

- <xsl:otherwise>
- <xsl:choose>
- <xsl:when test="boolean($referenceId)">
 untyped reference with reaction id

-
 <xsl:value-of select="$referenceId" />

 .
 </xsl:when>

 <xsl:otherwise>untyped and unlabeled reference.</xsl:otherwise>
 </xsl:choose>
 </xsl:otherwise>
 </xsl:choose>
 </p>
 </xsl:if>
 </xsl:template>

- <!--
 - unit definitions in a compartment must reference a defined identifier
 - for a unit definition.

62

 -->

- <xsl:template match="sbml:compartment[boolean(@units)]"
mode="compartmentUnitRef">

- <xsl:apply-templates select="//sbml:listOfUnitDefinitions"
mode="unitDefExistence">

 <xsl:with-param name="unitId" select="@units" />
 <xsl:with-param name="refLabel" select="@id" />
 <xsl:with-param name="refType">compartment</xsl:with-param>
 </xsl:apply-templates>
 </xsl:template>

- <!--
 - this gets used in general for testing for the existence of a unit
 - definition. based on the species existence check in the reaction
 - reference test.

 -->
- <xsl:template match="sbml:listOfUnitDefinitions" mode="unitDefExistence">
 <xsl:param name="unitId" />
- <xsl:param name="refLabel">
 <unspecified>
 </xsl:param>

- <xsl:param name="refType">
 <unspecified>
 </xsl:param>

- <xsl:if test="$unitId != "volume" and $unitId != "area" and $unitId != "length"
and $unitId != "substance" and $unitId != "time" and $unitId != "ampere" and
$unitId != "becquerel" and $unitId != "candela" and $unitId != "Celsius" and
$unitId != "coulomb" and $unitId != "dimensionless" and $unitId != "farad"
and $unitId != "gram" and $unitId != "gray" and $unitId != "henry" and
$unitId != "hertz" and $unitId != "item" and $unitId != "joule" and $unitId !=
"katal" and $unitId != "kelvin" and $unitId != "kilogram" and $unitId != "litre"
and $unitId != "lumen" and $unitId != "lux" and $unitId != "metre" and $unitId
!= "mole" and $unitId != "newton" and $unitId != "ohm" and $unitId !=
"pascal" and $unitId != "radian" and $unitId != "second" and $unitId !=
"siemens" and $unitId != "sievert" and $unitId != "steradian" and $unitId !=
"tesla" and $unitId != "volt" and $unitId != "watt" and $unitId != "weber" and
count(sbml:unitDefinition[@id=$unitId]) = 0">

- <p>
 Missing unit definition for identifier

-
 <xsl:value-of select="$unitId" />

 from element type

-
 <xsl:value-of select="$refType" />

 with identifier

63

-
 <xsl:value-of select="$refLabel" />

 .
 </p>
 </xsl:if>
 </xsl:template>

- <!--
 - outside definitions on compartments must exist and must not be
 - self referential.

 -->
- <xsl:template

match="sbml:listOfCompartments/sbml:compartment[boolean(@outside)]"
mode="compartmentOutRef">

 <xsl:variable name="currentId" select="@id" />
 <xsl:variable name="currentOut" select="@outside" />
- <xsl:choose>
- <xsl:when test="$currentId=$currentOut">
- <p>
 Compartment

-
 <xsl:value-of select="$currentId" />

 references itself for the

 outside
 attribute.
 </p>
 </xsl:when>

- <xsl:when test="count(//sbml:compartment[@id=$currentOut]) = 0">
- <p>
 Compartment

-
 <xsl:value-of select="$currentId" />

 references non-existent compartment id

-
 <xsl:value-of select="$currentOut" />

 for the

 outside
 attribute.
 </p>
 </xsl:when>
 </xsl:choose>
 </xsl:template>

- <!--

64

 - species elements can't define both an initialAmount and
 - initialConcentration attribute.

 -->
- <xsl:template match="sbml:species[boolean(@initialAmount) and

boolean(@initialConcentration)]" mode="speciesIC">
- <p>
 Species id

-
 <xsl:value-of select="@id" />

 defines both

 initialAmount
 and

 initialConcentration
 attributes.
 </p>
 </xsl:template>

- <!--
 - unit references in a species element must exist.

 -->
- <xsl:template match="sbml:species" mode="speciesUnitRef">
 <xsl:apply-templates select="." mode="speciesSubstanceUnitRef" />
 <xsl:apply-templates select="." mode="speciesSpatialUnitRef" />
 </xsl:template>

- <xsl:template match="sbml:species[boolean(@substanceUnits)]"
mode="speciesSubstanceUnitRef">

- <xsl:apply-templates select="//sbml:listOfUnitDefinitions"
mode="unitDefExistence">

 <xsl:with-param name="unitId" select="@substanceUnits" />
 <xsl:with-param name="refLabel" select="@id" />
 <xsl:with-param name="refType">species/substanceUnits</xsl:with-param>
 </xsl:apply-templates>
 </xsl:template>

- <xsl:template match="sbml:species[boolean(@spatialSizeUnits)]"
mode="speciesSpatialUnitRef">

- <xsl:apply-templates select="//sbml:listOfUnitDefinitions"
mode="unitDefExistence">

 <xsl:with-param name="unitId" select="@spatialSizeUnits" />
 <xsl:with-param name="refLabel" select="@id" />
 <xsl:with-param name="refType">species/spatialSizeUnits</xsl:with-param>
 </xsl:apply-templates>
 </xsl:template>

- <!--
 - unit references in a parameter element must exist.

 -->

65

- <xsl:template match="sbml:parameter[boolean(@units)]"
mode="parameterUnitRef">

- <xsl:apply-templates select="//sbml:listOfUnitDefinitions"
mode="unitDefExistence">

 <xsl:with-param name="unitId" select="@units" />
 <xsl:with-param name="refLabel" select="@id" />
 <xsl:with-param name="refType">parameter</xsl:with-param>
 </xsl:apply-templates>
 </xsl:template>

- <!--
 - variable references in a rule must exist. other rules need to
 - check for duplicate definitions of identifiers in relevant
 - elements. i'm assuming rules are prohibited from updating
 - parameters defined in kineticLaw elements.

 -->
- <xsl:template match="sbml:assignmentRule" mode="ruleVariableRef">
- <xsl:call-template name="testRuleVariableExist">
 <xsl:with-param name="currentVariable" select="@variable" />
 <xsl:with-param name="ruleType">assignmentRule</xsl:with-param>
 </xsl:call-template>
 </xsl:template>

- <xsl:template match="sbml:rateRule" mode="ruleVariableRef">
- <xsl:call-template name="testRuleVariableExist">
 <xsl:with-param name="currentVariable" select="@variable" />
 <xsl:with-param name="ruleType">rateRule</xsl:with-param>
 </xsl:call-template>
 </xsl:template>

- <xsl:template name="testRuleVariableExist">
 <xsl:param name="currentVariable" />
 <xsl:param name="ruleType" />
- <xsl:if test="count(//sbml:compartment[@id=$currentVariable]) +

count(//sbml:species[@id=$currentVariable]) +
count(//sbml:model/sbml:listOfParameters/sbml:parameter[@id=$currentVari
able]) = 0">

- <p>
 Rule type

-
 <xsl:value-of select="$ruleType" />

 references non-existent element identifier

-
 <xsl:value-of select="$currentVariable" />

 as its

 variable
 attribute.

66

 </p>
 </xsl:if>
 </xsl:template>

- <!--
 - there are a collection of tests for unit related definitions.
 - some are simple enough to get wrapped into a single mode.

 -->
- <!--
 - spatialDimension 0 compartments can't have a unit definition.

 -->
- <xsl:template match="sbml:compartment[@spatialDimensions=0 and

boolean(@units) and @units!="dimensionless"]" mode="unitDefs">
- <xsl:apply-templates select="//sbml:listOfUnitDefinitions"

mode="nonDimUnitCheck">
 <xsl:with-param name="unitId" select="@units" />
 <xsl:with-param name="compartmentId" select="@id" />
 </xsl:apply-templates>
 </xsl:template>

- <!--
 - check to see if a particular unit definition represents a
 - simple, non-dimensional quantity. note: this assumes some other
 - rule checks the name reference for the unit definition to make sure
 - it exists. the generated report fragments are set to work with the
 - compartment unit checks.

 -->
- <xsl:template match="sbml:listOfUnitDefinitions" mode="nonDimUnitCheck">
 <xsl:param name="compartmentId" />
 <xsl:param name="unitId" />
- <xsl:choose>
- <xsl:when test="count(sbml:unitDefinition[@id=$unitId]) = 0">
- <p>
 Compartment id

-
 <xsl:value-of select="$compartmentId" />

 with spatial dimensions 0 references primitive unit specifier

-
 <xsl:value-of select="$unitId" />

 .
 </p>
 </xsl:when>

- <xsl:otherwise>
- <xsl:apply-templates select="sbml:unitDefinition[@id=$unitId]"

mode="nonDimUnitCheck">

67

 <xsl:with-param name="compartmentId" select="$compartmentId" />
 <xsl:with-param name="unitId" select="$unitId" />
 </xsl:apply-templates>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

- <xsl:template match="sbml:unitDefinition" mode="nonDimUnitCheck">
 <xsl:param name="compartmentId" />
 <xsl:param name="unitId" />
- <xsl:choose>
- <xsl:when test="count(.//sbml:unit) = 0 or count(.//sbml:unit) > 1">
- <p>
 Compartment id

-
 <xsl:value-of select="$compartmentId" />

 with spatial dimensions 0 references complex unit definition

-
 <xsl:value-of select="$unitId" />

 .
 </p>
 </xsl:when>

- <xsl:when test="count(.//sbml:unit[@kind="dimensionless"]) != 1">
- <p>
 Compartment id

-
 <xsl:value-of select="$compartmentId" />

 defines units with spatial dimensions set to 0.
 </p>
 </xsl:when>
 </xsl:choose>
 </xsl:template>

- <!--
 - multiple assignment rules must not reference the same identifier as
their
 - variable. same for rate rules. an assignment rule and a rate rule
 - may reference the same identifier.

 -->
- <xsl:template match="sbml:assignmentRule" mode="uniqueRuleRef">
 <xsl:variable name="currentVariable" select="@variable" />
- <xsl:if test="count(following-

sibling::sbml:assignmentRule[@variable=$currentVariable]) > 0">
- <p>
 Duplicate

68

 variable
 attribute reference in

 assignmentRule
 for identifier

-
 <xsl:value-of select="@variable" />

 .
 </p>
 </xsl:if>
 </xsl:template>

- <xsl:template match="sbml:rateRule" mode="uniqueRuleRef">
 <xsl:variable name="currentVariable" select="@variable" />
- <xsl:if test="count(following-sibling::sbml:rateRule[@variable=$currentVariable])

> 0">
- <p>
 Duplicate

 variable
 attribute reference in

 rateRule
 for identifier

-
 <xsl:value-of select="@variable" />

 .
 </p>
 </xsl:if>
 </xsl:template>

- <!--
 - event unit declarations are restricted to the special symbols
 - time, second, or a unit definition identifier.

 -->
- <xsl:template match="sbml:event[boolean(@timeUnits)]" mode="eventUnitRef">
 <xsl:variable name="unit" select="@timeUnits" />
 <xsl:variable name="eventId" select="@id" />
- <xsl:if test="@timeUnits != "time" and @timeUnits != "second" and

count(//sbml:unitDefinition[@id=$unit]) = 0">
- <p>
- <xsl:choose>
- <xsl:when test="boolean($eventId)">
 Event id

-
 <xsl:value-of select="$eventId" />

 </xsl:when>

 <xsl:otherwise>Unlabeled event</xsl:otherwise>

69

 </xsl:choose>
 references invalid time unit type

-
 <xsl:value-of select="$unit" />

 .
 </p>
 </xsl:if>
 </xsl:template>

- <!--
 - eventAssignment elements must reference defined variables.
parameters
 - can't be defined in kineticLaw elements.

 -->
- <xsl:template match="sbml:eventAssignment" mode="eventVariableRef">
 <xsl:variable name="currentVar" select="@variable" />
 <xsl:variable name="currentEvent" select="../../@id" />
- <xsl:if test="count(//sbml:compartment[@id=$currentVar]) +

count(//sbml:species[@id=$currentVar]) +
count(//sbml:model/sbml:listOfParameters/sbml:parameter[@id=$currentVar]
) = 0">

- <p>
- <xsl:choose>
- <xsl:when test="boolean($currentEvent)">
 Event id

-
 <xsl:value-of select="$currentEvent" />

 </xsl:when>

 <xsl:otherwise>Unlabeled event</xsl:otherwise>
 </xsl:choose>
 references undefined variable

-
 <xsl:value-of select="$currentVar" />

 .
 </p>
 </xsl:if>
 </xsl:template>

- <!--
 - unit references in a kineticLaw element must be to existing unit
 - definitions.

 -->
- <xsl:template match="sbml:kineticLaw" mode="klawUnitRef">
 <xsl:apply-templates select="." mode="klawTimeUnitsRef" />
 <xsl:apply-templates select="." mode="klawSubstanceUnitsRef" />

70

 </xsl:template>
- <xsl:template match="sbml:kineticLaw[boolean(@timeUnits)]"

mode="klawTimeUnitsRef">
- <xsl:apply-templates select="//sbml:listOfUnitDefinitions"

mode="unitDefExistence">
 <xsl:with-param name="unitId" select="@timeUnits" />
 <xsl:with-param name="refLabel" select="../@id" />
 <xsl:with-param name="refType">reaction/kineticLaw/timeUnits</xsl:with-param>
 </xsl:apply-templates>
 </xsl:template>

- <xsl:template match="sbml:kineticLaw[boolean(@substanceUnits)]"
mode="klawSubstanceUnitsRef">

- <xsl:apply-templates select="//sbml:listOfUnitDefinitions"
mode="unitDefExistence">

 <xsl:with-param name="unitId" select="@substanceUnits" />
 <xsl:with-param name="refLabel" select="../@id" />
 <xsl:with-param name="refType">reaction/kineticLaw/substanceUnits</xsl:with-

param>
 </xsl:apply-templates>
 </xsl:template>

- <!--
 - ci elements inside a function definition must refer to lexically
 - preceding function definitions or one of the bound variables.

 -->
- <xsl:template

match="sbml:functionDefinition/math:math/math:lambda/*[position()=last()]
//math:ci" mode="functionLabelRef">

 <xsl:variable name="var" select="text()" />
- <xsl:if test="count(ancestor::math:lambda/math:bvar/math:ci[text()=$var]) +

count(ancestor::sbml:functionDefinition/preceding-
sibling::sbml:functionDefinition[@id=$var]) = 0">

- <p>
 Missing or inappropriate symbol definition for reference

-
 <xsl:value-of select="$var" />

 in

 functionDefinition
 with id

-
 <xsl:value-of select="ancestor::sbml:functionDefinition/@id" />

 .
 </p>
 </xsl:if>
 </xsl:template>

71

- <!--
 - identifiers in rules are restricted to refering to identifiers for
 - particular types of elements. this depends on some other template
 - making checks for duplicate identifiers. this is not checking for
 - reference cycles among rules just definition of the identifiers.

 -->
- <xsl:template match="sbml:listOfRules/sbml:algebraicRule/math:math//math:ci

|sbml:listOfRules/sbml:assignmentRule/math:math//math:ci
|sbml:listOfRules/sbml:rateRule/math:math//math:ci" mode="ruleLabelRef">

 <xsl:variable name="var" select="text()" />
- <xsl:if test="count(//sbml:functionDefinition[@id=$var]) +

count(//sbml:compartment[@id=$var]) + count(//sbml:species[@id=$var]) +
count(//sbml:model/sbml:listOfParameters/sbml:parameter[@id=$var]) = 0">

- <p>
 Missing or inappropriate symbol definition for reference

-
 <xsl:value-of select="$var" />

 in

-
 <xsl:apply-templates

select="ancestor::sbml:algebraicRule|ancestor::sbml:assignmentRule
|ancestor::sbml:rateRule" mode="elementLabelSelector" />

 .
 </p>
 </xsl:if>
 </xsl:template>

- <!--
 - identifiers in kineticLaw elements are restricted to local and
 - global parameters, function definitions, compartments, and
 - species included in the reaction definition. like the other
 - reference testing rules, this depends on making uniqueness checks
 - made elsewhere.

 -->
- <xsl:template match="sbml:kineticLaw/math:math//math:ci"

mode="klawLabelRef">
 <xsl:variable name="var" select="text()" />
- <xsl:if

test="count(ancestor::sbml:reaction//sbml:speciesReference[@species=$var])
+
count(ancestor::sbml:reaction//sbml:modifierSpeciesReference[@species=$var
]) +
count(ancestor::sbml:kineticLaw/sbml:listOfParameters/sbml:parameter[@id=
$var]) + count(//sbml:functionDefinition[@id=$var]) +
count(//sbml:compartment[@id=$var]) +
count(//sbml:model/sbml:listOfParameters/sbml:parameter[@id=$var]) = 0">

72

- <p>
 Missing or inappropriate symbol definition for reference

-
 <xsl:value-of select="$var" />

 in

 kineticLaw
 element for

- <xsl:choose>
- <xsl:when test="boolean(ancestor::sbml:reaction/@id)">
 reaction id

-
 <xsl:value-of select="ancestor::sbml:reaction/@id" />

 </xsl:when>

- <xsl:when test="boolean(ancestor::sbml:reaction/@name)">
 reaction name

-
 <xsl:value-of select="ancestor::sbml:reaction/@name" />

 </xsl:when>

 <xsl:otherwise>unlabeled reaction</xsl:otherwise>
 </xsl:choose>
 .
 </p>
 </xsl:if>
 </xsl:template>

- <!--
 - identifiers in the delay element of an event have reference
requirements
 - like rules; they can only reference global parameters allowed to
vary.

 -->
- <xsl:template match="sbml:delay/math:math//math:ci" mode="delayLabelRef">
 <xsl:variable name="var" select="text()" />
- <xsl:if test="count(//sbml:functionDefinition[@id=$var]) +

count(//sbml:compartment[@id=$var]) + count(//sbml:species[@id=$var]) +
count(//sbml:model/sbml:listOfParameters/sbml:parameter[@id=$var]) = 0">

- <p>
 Missing or inappropriate symbol definition for reference

-
 <xsl:value-of select="$var" />

 in

 delay
 element for

73

- <xsl:choose>
- <xsl:when test="boolean(ancestor::sbml:event/@id)">
 event id

-
 <xsl:value-of select="ancestor::sbml:event/@id" />

 </xsl:when>

- <xsl:when test="boolean(ancestor::sbml:event/@name)">
 event name

-
 <xsl:value-of select="ancestor::sbml:event/@name" />

 </xsl:when>

 <xsl:otherwise>unlabeled event</xsl:otherwise>
 </xsl:choose>
 .
 </p>
 </xsl:if>
 </xsl:template>

- <!--
 - identifiers in the trigger element of an event have reference
requirements
 - like rules; they can only reference global parameters allowed to
vary.

 -->
- <xsl:template match="sbml:trigger/math:math//math:ci" mode="triggerLabelRef">
 <xsl:variable name="var" select="text()" />
- <xsl:if test="count(//sbml:functionDefinition[@id=$var]) +

count(//sbml:compartment[@id=$var]) + count(//sbml:species[@id=$var]) +
count(//sbml:model/sbml:listOfParameters/sbml:parameter[@id=$var]) = 0">

- <p>
 Missing or inappropriate symbol definition for reference

-
 <xsl:value-of select="$var" />

 in

 trigger
 element for

- <xsl:choose>
- <xsl:when test="boolean(ancestor::sbml:event/@id)">
 event id

-
 <xsl:value-of select="ancestor::sbml:event/@id" />

 </xsl:when>

- <xsl:when test="boolean(ancestor::sbml:event/@name)">

74

 event name
-
 <xsl:value-of select="ancestor::sbml:event/@name" />

 </xsl:when>

 <xsl:otherwise>unlabeled event</xsl:otherwise>
 </xsl:choose>
 .
 </p>
 </xsl:if>
 </xsl:template>

- <!--
 - these templates convert typical element labels into corresponding
 - text nodes. there doesn't seem to be a way to do it using
 - combinations of the current context and the value-of operation.
 - value-of wants to return the _content_ of the node and not the
 - label of the node.

 -->
- <xsl:template match="sbml:functionDefinition" mode="elementLabelSelector">
 <xsl:text>functionDefinition</xsl:text>
 </xsl:template>

- <xsl:template match="sbml:compartment" mode="elementLabelSelector">
 <xsl:text>compartment</xsl:text>
 </xsl:template>

- <xsl:template match="sbml:species" mode="elementLabelSelector">
 <xsl:text>species</xsl:text>
 </xsl:template>

- <xsl:template match="sbml:parameter" mode="elementLabelSelector">
 <xsl:text>parameter</xsl:text>
 </xsl:template>

- <xsl:template match="sbml:reaction" mode="elementLabelSelector">
 <xsl:text>reaction</xsl:text>
 </xsl:template>

- <xsl:template match="sbml:event" mode="elementLabelSelector">
 <xsl:text>event</xsl:text>
 </xsl:template>

- <xsl:template match="sbml:algebraicRule" mode="elementLabelSelector">
 <xsl:text>algebraicRule</xsl:text>
 </xsl:template>

- <xsl:template match="sbml:assignmentRule" mode="elementLabelSelector">
 <xsl:text>assignmentRule</xsl:text>
 </xsl:template>

- <xsl:template match="sbml:rateRule" mode="elementLabelSelector">
 <xsl:text>rateRule</xsl:text>
 </xsl:template>

- <!--

75

 - a default rules, one for each rule mode, so unprocessed text and
 - attributes are not output to the report. this needs to always be
 - at the bottom of the file.

 -->
 <xsl:template match="@*|text()" />
 <xsl:template match="@*|text()" mode="matchUnitId" />
 <xsl:template match="@*|text()" mode="matchReactionParamId" />
 <xsl:template match="@*|text()" mode="matchGlobalId" />
 <xsl:template match="@*|text()" mode="speciesCompartment" />
 <xsl:template match="@*|text()" mode="reactionReferenceCheck" />
 <xsl:template match="@*|text()" mode="speciesExistenceCheck" />
 <xsl:template match="@*|text()" mode="compartmentUnitRef" />
 <xsl:template match="@*|text()" mode="unitDefExistence" />
 <xsl:template match="@*|text()" mode="compartmentOutRef" />
 <xsl:template match="@*|text()" mode="speciesIC" />
 <xsl:template match="@*|text()" mode="unitDefs" />
 <xsl:template match="@*|text()" mode="speciesUnitRef" />
 <xsl:template match="@*|text()" mode="speciesSubstanceUnitRef" />
 <xsl:template match="@*|text()" mode="speciesSpatialUnitRef" />
 <xsl:template match="@*|text()" mode="parameterUnitRef" />
 <xsl:template match="@*|text()" mode="ruleVariableRef" />
 <xsl:template match="@*|text()" mode="nonDimUnitCheck" />
 <xsl:template match="@*|text()" mode="uniqueRuleRef" />
 <xsl:template match="@*|text()" mode="eventUnitRef" />
 <xsl:template match="@*|text()" mode="eventVariableRef" />
 <xsl:template match="@*|text()" mode="klawUnitRef" />
 <xsl:template match="@*|text()" mode="klawTimeUnitsRef" />
 <xsl:template match="@*|text()" mode="klawSubstanceUnitsRef" />
 <xsl:template match="@*|text()" mode="functionLabelRef" />
 <xsl:template match="@*|text()" mode="ruleLabelRef" />
 <xsl:template match="@*|text()" mode="klawLabelRef" />
 <xsl:template match="@*|text()" mode="delayLabelRef" />
 <xsl:template match="@*|text()" mode="triggerLabelRef" />
 </xsl:stylesheet>

